GENERALIZATION OF MENGER'S RESULT ON THE STRUCTURE OF LOGICAL FORMULAS

DAL CHARLES GERNETH¹

Menger's paper² gives necessary and sufficient conditions that an expression containing sentential variables and unary and binary sentential connectives be a formula in the Łukasiewicz notation. This paper extends his result to expressions containing *n*-ary symbols for all $n \ge 0$. Sentential variables and constants are treated as the case n=0.

An expression is a sequence $s_1 \cdots s_k$ such that s_i for $i=1, \cdots, k$ is an *n*-ary symbol for some *n*. An initial segment of such an expression is an expression $s_1 \cdots s_i$ where i < k; a terminal segment is an expression $s_t \cdots s_k$ where t > 1. A formula is a sequence $sz_1 \cdots z_n$ where *s* is an *n*-ary symbol, and z_1, \cdots, z_n are formulas. The measure [s] of an *n*-ary symbol *s* is n-1. The measure $[s_1 \cdots s_k]$ of an expression $s_1 \cdots s_k$ is $[s_1] + \cdots + [s_k]$.

THEOREM. Necessary and sufficient conditions that an expression $x = s_1 \cdots s_k$ be a formula are:

(1)
$$[y] \ge 0$$
 for each initial segment y of x,

and

$$[x] = -1.$$

PROOF. Suppose s is an n-ary symbol, $z_1, \dots, z_h, h \ge 0$ are formulas, z is an initial segment of a formula z_{h+1} , and z_1, \dots, z_{h+1} satisfy (1) and (2). Then

(3)
$$[sz_1 \cdots z_h] = [s] + [z_1] + \cdots + [z_h]$$
$$= (n-1) - 1 - \cdots - 1 = n - 1 - h$$

and

(4)
$$[sz_1 \cdots z_h z] = n - 1 - h + [z] \ge n - 1 - h.$$

PROOF OF NECESSITY. Let $x = sz_1 \cdots z_n$ be a formula where by the induction hypothesis s is an *n*-ary symbol and z_1, \cdots, z_n are formulas

Received by the editors August 14, 1947.

¹ Paper suggested by Dr. J. C. C. McKinsey and Miss Helen Dayton of Oklahoma Agricultural and Mechanical College.

² Menger, Karl, *Eine elementare Bemerkung über die Struktur logischer Formeln*, Ergebnisse eines mathematischen Kolloquiums, vol. 3, 1930–1931, pp. 22–23.