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In the numerical integration of a function f(x) it is very desirable to
choose the set of values {;} at which the function f(x) is to be ob-
served, for it is generally possible to obtain the same accuracy with
fewer points when these points are especially selected. Gauss' gave
such a proof for the case of the finite range (—1, +1) and established
that the “best” accuracy with # ordinates is obtained when the cor-
responding abscissae are the # roots of the Legendre polynomials,
P,(x)=0. For this case there obtains
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where the numbers {x;,} are the zeros of P,(x) and where the num-
bers {)\;,,,} are the Christoffel or Cotes numbers. Formula (1) is
exact whenever f(x) is a polynomial of degree (2n—1) or less. Values
of the zeros {x;.} and the corresponding Christoffel numbers {\:.}
for the Legendre polynomials for #=1 to n=16 have been tabulated
by the Mathematical Tables Project.? The range of integration can
be chosen to be any finite range (p, ¢) with suitable modification? of
the zeros {:..} and the constants {\i..}.

It is understood that while selection of the abscissae {x.;,,} is very
desirable for theoretical reasons, it may not always be practicable to
measure the ordinates of f(x) at these values.

For the infinite range (— «, + ) a similar situation holds for the
Hermite polynomials. These may be defined by the relation
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