BOUNDS ON CHARACTERISTIC VALUES

EDWARD W. BARANKIN

In a previous paper [1] ${ }^{1}$ the author obtained several upper bounds for the characteristic roots of a finite matrix. The purpose of this note is to establish the corresponding results for characteristic values of certain linear transformations in certain infinite spaces.

1. Infinite matrices. We consider a non-null infinite matrix, $A=\left(a_{s t}\right), s, t=1,2, \cdots$, of complex numbers. (The present considerations pertain also to the finite case when $a_{s t}=0$ for $s>n$ and $t>n$.) We shall say that A is absolutely summable (abbreviated a.s.) when the double series $\sum_{s, t}\left|a_{s t}\right|$ converges. In general, if $\sum_{s, t}\left|a_{s t}\right|^{p}$ converges for a positive number p, A will be said to be absolutely summable (p). If A is a.s. (p), then $\sum_{t}\left|a_{s t}\right|^{p}$ converges for all s, $\sum_{s}\left|a_{s t}\right|^{p}$ converges for all t, and

$$
\sum_{s, t}\left|a_{s t}\right|^{p}=\sum_{s} \sum_{t}\left|a_{s t}\right|^{p}=\sum_{t} \sum_{s}\left|a_{s t}\right|^{p}
$$

We define

$$
R_{s}^{(p)}=\sum_{t}\left\lfloor\left. a_{s t}\right|^{p}, \quad T_{t}^{(p)}=\sum_{s}\left|a_{s t}\right|^{p},\right.
$$

and, for brevity, $R_{s}=R_{s}^{(1)}, T_{t}=T_{t}^{(1)}$. Clearly if A is a.s. (p), it is a.s. (q) for every $q>p$. Observe also that $R_{s}^{(p)}=0$ or $T_{t}^{(p)}=0$ imply, respectively, the vanishing of all elements in the s th row or of all elements in the t th column of A.

Let A be a.s. $(p), p \leqq 1$, and l denote the space of bounded sequences of complex numbers $\left\{x_{r}\right\}$. Throughout, we shall view A as a transformation in l. As such, A carries l into a proper sub-manifold. For, let $\left\{x_{r}\right\} \in l$, and $\left|x_{r}\right|<M, r=1,2, \cdots$. Then the transform of $\left\{x_{r}\right\}$ has the components

$$
y_{s}=\sum_{t} a_{s t} x_{t}, \quad s=1,2, \cdots
$$

Since $p \leqq 1$, we have

$$
\left|y_{s}\right|^{p} \leqq\left(\sum_{t}\left|a_{s t}\right| \cdot\left|x_{t}\right|\right)^{p} \leqq M^{p}\left(\sum_{t}\left|a_{s t}\right|\right)^{p} \leqq M^{p} \sum_{t}\left|a_{s t}\right|^{p}
$$

Received by the editors August 17, 1946, and, in revised form, September 5, 1947.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

