BOUNDS ON CHARACTERISTIC VALUES

EDWARD W. BARANKIN

In a previous paper $[1]^1$ the author obtained several upper bounds for the characteristic roots of a finite matrix. The purpose of this note is to establish the corresponding results for characteristic values of certain linear transformations in certain infinite spaces.

1. Infinite matrices. We consider a non-null infinite matrix, $A = (a_{st})$, s, $t = 1, 2, \dots$, of complex numbers. (The present considerations pertain also to the finite case when $a_{st} = 0$ for s > n and t > n.) We shall say that A is absolutely summable (abbreviated a.s.) when the double series $\sum_{s,t} |a_{st}|$ converges. In general, if $\sum_{s,t} |a_{st}|^p$ converges for a positive number p, A will be said to be absolutely summable (p). If A is a.s.(p), then $\sum_t |a_{st}|^p$ converges for all s, $\sum_s |a_{st}|^p$ converges for all t, and

$$\sum_{s,t} \left| a_{st} \right|^p = \sum_s \sum_t \left| a_{st} \right|^p = \sum_t \sum_s \left| a_{st} \right|^p.$$

We define

$$R_{s}^{(p)} = \sum_{t} |a_{st}|^{p}, \quad T_{t}^{(p)} = \sum_{s} |a_{st}|^{p},$$

and, for brevity, $R_s = R_s^{(1)}$, $T_t = T_t^{(1)}$. Clearly if A is a.s.(p), it is a.s.(q) for every q > p. Observe also that $R_s^{(p)} = 0$ or $T_t^{(p)} = 0$ imply, respectively, the vanishing of all elements in the sth row or of all elements in the *t*th column of A.

Let A be a.s.(p), $p \leq 1$, and l denote the space of bounded sequences of complex numbers $\{x_r\}$. Throughout, we shall view A as a transformation in l. As such, A carries l into a proper sub-manifold. For, let $\{x_r\} \in l$, and $|x_r| < M$, $r = 1, 2, \cdots$. Then the transform of $\{x_r\}$ has the components

$$y_s = \sum_t a_{st} x_t, \qquad s = 1, 2, \cdots.$$

Since $p \leq 1$, we have

$$|y_s|^p \leq \left(\sum_t |a_{st}| \cdot |x_t|\right)^p \leq M^p \left(\sum_t |a_{st}|\right)^p \leq M^p \sum_t |a_{st}|^p,$$

Received by the editors August 17, 1946, and, in revised form, September 5, 1947. ¹ Numbers in brackets refer to the bibliography at the end of the paper.