THE CRITICAL NUMBERS FOR UNSYMMETRICAL APPROXIMATION

RAPHAEL M. ROBINSON

1. Statement of the main theorem. If ξ is an irrational number, then the modulus of approximability from the right, $M^+(\xi)$, is defined as the least upper bound of the values of μ for which the inequality

$$0 < \frac{A}{B} - \xi < \frac{1}{\mu B^2}$$

has infinitely many solutions. In a similar way, $M^{-}(\xi)$ is defined measuring the approximability of ξ from the left.

The number ξ is called *critical* if there is no other irrational number ξ' for which

$$M^+(\xi') < M^+(\xi), \qquad M^-(\xi') < M^-(\xi).$$

That is, roughly speaking, ξ is called critical if there is no other number which is harder to approximate both from the right and from the left. The purpose of this paper is to give a necessary and sufficient condition that ξ be critical.

A few definitions are necessary before stating the main theorem. A sequence of non-negative integers r_1 , r_2 , r_3 , r_4 , \cdots will be called *derivable* if

$$\liminf r_n + 1 = \limsup r_n < \infty,$$

that is, if ultimately just two different numbers occur in the sequence, and these are consecutive integers k and k+1. In this case, the sequence has the form

$$r_1, r_2, \cdots, r_v, k, (k+1)^{s_1}, k, (k+1)^{s_2}, k, (k+1)^{s_3}, k, \cdots,$$

the exponents denoting repetition of the term k+1. Here the s_n are non-negative integers; if there are consecutive k's in the sequence, then we must take some of the s_n equal to zero.

We shall call s_1, s_2, s_3, \cdots the derived sequence. Together with k, this derived sequence determines the end of the primitive sequence:

$$k, (k + 1)^{s_1}, k, (k + 1)^{s_2}, k, (k + 1)^{s_8}, k, \cdots$$

Presented to the Society, October 25, 1947; received by the editors, August 25, 1947.