ON THE DENSITY OF SOME SEQUENCES OF INTEGERS

P. ERDÖS

Let $a_{1}<a_{2}<\cdots$ be any sequence of integers such that no one divides any other, and let $b_{1}<b_{2}<\cdots$ be the sequence composed of those integers which are divisible by at least one a. It was once conjectured that the sequence of b 's necessarily possesses a density. Besicovitch ${ }^{1}$ showed that this is not the case. Later Davenport and I^{2} showed that the sequence of b 's always has a logarithmic density, in other words that $\lim _{n \rightarrow \infty}(1 / \log n) \sum_{b_{i} \leqq n} 1 / b_{i}$ exists, and that this logarithmic density is also the lower density of the b 's.

It is very easy to see that if $\sum 1 / a_{i}$ converges, then the sequence of b 's possesses a density. Also it is easy to see that if every pair of a 's is relatively prime, the density of the b 's equals $\amalg\left(1-1 / a_{i}\right)$, that is, is 0 if and only if $\sum 1 / a_{i}$ diverges. In the present paper I investigate what weaker conditions will insure that the b 's have a density. Let $f(n)$ denote the number of a 's not exceeding n. I prove that if $f(n)<c n / \log n$, where c is a constant, then the b 's have a density. This result is best possible, since we show that if $\psi(n)$ is any function which tends to infinity with n, then there exists a sequence a_{n} with $f(n)<n \cdot \psi(n) / \log n$, for which the density of the b 's does not exist. The former result will be obtained as a consequence of a slightly more precise theorem. Let $\phi\left(n ; x ; y_{1}, y_{2}, \cdots, y_{n}\right)$ denote generally the number of integers not exceeding n which are divisible by x but not divisible by y_{1}, \cdots, y_{n}. Then a necessary and sufficient condition for the b 's to have a density is that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{n^{1-\epsilon}<a_{i} \leq n} \phi\left(n ; a_{i} ; a_{1}, a_{2}, \cdots, a_{i-1}\right)=0 . \tag{1}
\end{equation*}
$$

The condition (1) is certainly satisfied if $f(n)<c n / \log n$, since

$$
\begin{aligned}
\frac{1}{n} \sum_{n^{1-\epsilon}<a_{i} \leqq n} \phi\left(n ; a_{i} ; a_{1} \cdots a_{i-1}\right) & <\frac{1}{n} \sum_{n^{1-\epsilon}<a_{i} \leq n}\left[\frac{n}{a_{i}}\right] \\
& <\sum_{n^{1-\epsilon<m} \log m<n} \frac{c^{\prime}}{m \log m}=O(\epsilon)+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

Received by the editors April 28, 1947, and, in revised form, September 5, 1947.
${ }^{1}$ Math. Ann. vol. 110 (1934-1935) pp. 336-341.
${ }^{2}$ Acta Arithmetica vol. 2.

