## SET FUNCTIONS AND SOUSLIN'S HYPOTHESIS

## DOROTHY MAHARAM

1. Introduction. It is known ${ }^{1}$ that Souslin's hypothesis ${ }^{2}$ is implied by the existence of a nontrivial outer measure on every field of sets satisfying certain conditions. We shall here prove that Souslin's hypothesis is equivalent to the existence, on a wide class of fields of sets, of set-functions of a certain type. The axiom of choice is assumed, but not the continuum hypothesis.
Instead of working with fields of sets, it is more convenient to use the equivalent notion of a (finitely additive) Boolean algebra, E. ${ }^{3}$ We say that $x, y \in E$ are disjoint if $x \wedge y=0$, and that they intersect otherwise. A set $S$ of elements of $E$ will be called a Souslin system if it satisfies the following three postulates:
(1) $S \nexists o$, and whenever $s, s^{\prime} \in S$, then either $s \wedge s^{\prime}=0$, or $s \geqq s^{\prime}$, or $s^{\prime} \geqq s$.
(2) If $A \subset S$ consists of pairwise disjoint elements only, then $A$ is(at most) countable.
(3) If $A \subset S$ is such that every two of its elements intersect, then $A$ is countable.

Souslin's hypothesis is known to be equivalent to the assertion that every Souslin system is countable. ${ }^{4}$

Theorem. Souslin's hypothesis is true if and only if there exists, on each non-atomic Boolean algebra $E$ satisfying the countable chain condition, a real-valued function $f$ such that (i) $x \geqq y \rightarrow f(x) \geqq f(y)$, (ii) $f(x)=0$ $\leftrightarrow x=0$, and (iii) given $x \in E-(o)$ and $\epsilon>0$, there exists $y \in E-(o)$ such that $y<x$ and $f(y)<\epsilon$.
2. "If." Suppose an uncountable Souslin system exists. Then, as easily follows from [2, §7], there exists a complete Boolean algebra $E$, satisfying the countable chain condition, and an uncountable Souslin system $S \subset E$ having the following additional properties:
(4) $S=U S_{\alpha}$, where $\alpha$ ranges over all countable ordinals, and the elements of each $S_{\alpha}$ are pairwise disjoint.
(5) If $\alpha<\beta$, then for each $s_{\beta} \in S_{\beta}$ there exists an $s_{\alpha}\left(\in S_{\alpha}\right)$ such that $s_{\alpha}>s_{\beta}$.

Received by the editors August 12, 1947.
${ }^{1}$ See [2]; in the case of a measure, the result is due to K. Gödel. Numbers in brackets refer to the bibliography at the end of the paper.
${ }^{2}$ Souslin, Fund. Math. vol. 1 (1920) p. 223.
${ }^{8}$ See [2] for notations, and so on.
${ }^{4}$ This follows from [3], together with some results in [1].

