RINGS WITH A POLYNOMIAL IDENTITY

IRVING KAPLANSKY

1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2] ${ }^{1}$ proved the following theorem: a division ring D in which the identity

$$
\begin{equation*}
(x y-y x)^{2} z=z(x y-y x)^{2} \tag{1}
\end{equation*}
$$

holds is either a field or a (generalized) quaternion algebra over its center F. In particular, D is finite-dimensional over F, something not assumed a priori. The main result (§2) in the present paper is the following: if D satisfies any polynomial identity it is finite-dimensional over F. There are connections with other problems which we note in §§3, 4.
2. Proof of finite-dimensionality. Let A be an algebra (no assumption of finite order) over a field F. We denote by $F\left[x_{1}, \cdots, x_{r}\right]$ the free algebra generated by r indeterminates over F. We say that A satisfies a polynomial identity if there exists a nonzero element f in $F\left[x_{1}, \cdots, x_{r}\right]$ such that $f\left(a_{1}, \cdots, a_{r}\right)=0$ for all a_{i} in A.

Lemma 1. ${ }^{2}$ If A satisfies any polynomial identity, then it satisfies a polynomial identity in two variables.

Proof. Suppose A satisfies the equation $f\left(x_{1}, \cdots, x_{r}\right)=0$. Replacing x_{i} by $u^{i v}$ we obtain the equation $g(u, v)=0$, with g a polynomial which is not identically zero.

Lemma 2. If A satisfies any polynomial identity, it satisfies a polynomial identity which is linear in each variable.

Proof. Suppose A satisfies $f\left(x_{1}, \cdots, x_{r}\right)=0$ and that f is not linear in x_{1}. Then

$$
f\left(y+z, x_{2}, \cdots, x_{r}\right)-f\left(y, x_{2}, \cdots, x_{r}\right)-f\left(z, x_{2}, \cdots, x_{r}\right)=0
$$

is satisfied by A. This is a polynomial (in $r+1$ variables), not identically zero, and with degree in y and z lower than the degree of f in x_{1}. By successive steps of this kind we reach a polynomial linear in all variables.

Presented to the Society, September 3, 1947; received by the editors August 20, 1947.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.
${ }^{2}$ Cf. [7, Satz 2].

