A NOTE ON LACUNARY POLYNOMIALS

MORRIS MARDEN

1. Introduction. In the present note we shall give an elementary derivation of some new bounds for the p smallest (in modulus) zeros of the polynomials of the lacunary type

$$
\begin{aligned}
& \text { (1.1) } f(z)=a_{0}+a_{1} z+\cdots+a_{p} z^{p}+a_{n_{1}} z^{n_{1}}+a_{n_{2}} z^{n_{2}}+\cdots+a_{n_{k}} z^{n_{k}} \text {, } \\
& a_{0} a_{p} \neq 0,0<p=n_{0}<n_{1}<\cdots<n_{k} .
\end{aligned}
$$

This will be done by the iterated application, first, of Kakeya's Theorem ${ }^{1}$ that, if a polynomial of degree n has p zeros in a circle C of radius R, its derivative has at least $p-1$ zeros in the concentric circle C^{\prime} of radius $R^{\prime}=R \phi(n, p)$; and, secondly, of the specific limits

$$
\begin{gather*}
\phi(n, p) \leqq \csc [\pi / 2(n-p+1)] \tag{1.2}\\
\phi(n, p) \leqq \prod_{j=1}^{n-p}(n+j) /(n-j) \tag{1.3}
\end{gather*}
$$

furnished by Marden ${ }^{2}$ and Biernacki ${ }^{3}$ respectively.
2. Derivation of the bounds. An immediate corollary to Kakeya's Theorem is:

Theorem I. If the derivative of an nth degree polynomial $P(z)$ has at most $p-1$ zeros in a circle Γ of radius ρ, then $P(z)$ has at most p zeros in the concentric circle Γ^{\prime} of radius $\rho^{\prime}=\rho / \phi(n, p+1)$.

We shall use Theorem I to prove the following theorem.

Theorem II. If all the zeros of the polynomial

$$
\begin{align*}
f_{0}(z)= & n_{1} n_{2} \cdots n_{k} a_{0}+\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{k}-1\right) a_{1} z \tag{2.1}\\
& +\cdots+\left(n_{1}-p\right)\left(n_{2}-p\right) \cdots\left(n_{k}-p\right) a_{p} z^{p}
\end{align*}
$$

lie in the circle $|z| \leqq R_{0}$, at least p zeros of polynomial (1.1) lie in the circle

[^0]
[^0]: Presented to the Society, September 5, 1947; received by the editors August 22 1947.
 ${ }^{1}$ S. Kakeya, Tôhoku Math. J. vol. 11 (1917) pp. 5-16.
 ${ }^{2}$ M. Marden, Trans. Amer. Math. Soc. vol. 45 (1939) pp. 335-368. See also M. Marden, The geometry of the zeros of a polynomial in a complex variable, to be published as a volume of Mathematical Surveys.
 ${ }^{8}$ M. Biernacki, Bull. Soc. Math. France (2) vol. 69 (1945) pp. 197-203.

