THE MULTIPLICATIVE COMPLETION OF SETS OF FUNCTIONS

R. P. BOAS, JR. AND HARRY POLLARD

1. Introduction. A set $\left\{f_{n}(x)\right\}_{1}^{\infty}$ of functions of $L^{2}(a, b)$, where (a, b) is finite or infinite, is called complete if $g(x) \in L^{2}$ and $\int_{a}^{b} f_{n}(x) g(x) d x$ $=0, n=1,2, \cdots$, imply that $g(x)=0$ almost everywhere on (a, b); a well known equivalent property ("closure") is that every element of L^{2} can be approximated in the L^{2} metric by finite linear combinations of the $f_{n}(x)$.

Suppose that $\left\{f_{n}(x)\right\}$ is not complete. It will sometimes be possible to find a function $m(x)$ such that the set $\left\{m(x) f_{n}(x)\right\}$ is complete. This can also be considered as completeness after a change of weight function or a change of measure; but we shall not attempt to consider the most general change of measure here. We give some results on when a set can or cannot be completed by multiplication; the problem of finding necessary and sufficient conditions is left open.

We first state our results.
Theorem 1. If $\left\{f_{n}(x)\right\}_{1}^{\infty}$ is an orthonormal set which is not complete, but can be completed by the addition of a finite number of functions to the set, then there is a bounded measurable function $m(x)$ such that $\left\{m(x) f_{n}(x)\right\}_{1}^{\infty}$ is complete.

The condition of Theorem 1, while necessary, is not sufficient, as Theorem 2 shows.

Theorem 2. The orthogonal set $\left\{e^{-x / 2} L_{2 n}(x)\right\}_{0}^{\infty}$, where $L_{2 n}(x)$ is the 2nth Laguerre polynomial, cannot be completed on ($0, \infty$) by the addition of a finite number of functions, but is completed on multiplication by $m(x)=e^{-x / 2}$.

Our next three theorems give examples of sets which cannot be completed by multiplication.

Theorem 3. A set of even functions cannot be completed by multiplication by an integrable function in any interval containing 0.

Theorem 4. The set $\left\{e^{2 i n x}\right\}_{-\infty}^{\infty}$ cannot be completed in $(-\pi, \pi)$ by multiplication by an integrable function.

Theorem 5. The set $\left\{x^{\lambda_{n}}\right\}$, where $\lambda_{n}>0, \sum 1 / \lambda_{n}<\infty$, cannot be completed in any interval by multiplication by a continuous function.

Received by the editors April 9, 1947, and, in revised form, July 30, 1947.

