ON THE DISTRIBUTION OF THE MAXIMUM OF SUCCESSIVE CUMULATIVE SUMS OF INDEPENDENTLY BUT NOT IDENTICALLY DISTRIBUTED CHANCE VARIABLES

ABRAHAM WALD

1. Introduction. Let X_{1}, X_{2}, \cdots, and so on be a sequence of chance variables and let S_{i} denote the sum of the first $i X$'s, that is,

$$
\begin{equation*}
S_{i}=X_{1}+\cdots+X_{i} \quad(i=1,2, \cdots, \text { ad inf }) \tag{1.1}
\end{equation*}
$$

Let M_{N} denote the maximum of the first N cumulative sums S_{1}, \cdots, S_{N}, that is,

$$
\begin{equation*}
M_{N}=\max \left(S_{1}, \cdots, S_{N}\right) \tag{1.2}
\end{equation*}
$$

The distribution of M_{N}, in particular the limiting distribution of a suitably normalized form of M_{N}, has been studied by Erdös and Kac [1] ${ }^{1}$ and by the author [2] in the special case when the X 's are independently distributed with identical distributions.

In this note we shall be concerned with the distribution of M_{N} when the X 's are independent but not necessarily identically distributed. In particular, the mean and variance of X_{i} may be any functions of i.

In §2 lower and upper limits for M_{N} are obtained which yield particularly simple limits for the distribution of M_{N} when the X's are symmetrically distributed around zero.

In §3 the special case is considered when X_{i} can take only the values 1 and -1 but the probability p_{i} that $X_{i}=1$ may be any function of i. The exact probability distribution of M_{N} for this case is derived and expressed as the first row of a product of N matrices.

The limiting distribution of $M_{N} / N^{1 / 2}$ is treated in $\S 4$. Since the interesting limiting case arises when the mean of $X_{i}(i \leqq N)$ is not only a function of i but also a function of N, we have to introduce a double sequence of chance variables. That is, for any N we consider a sequence of N chance variables $X_{N 1}, \cdots, X_{N N}$. Let $\mu_{N i}$ denote the mean and $\sigma_{N i}$ the standard deviation of $X_{N i}$. Let, furthermore, $S_{N i}$ denote the sum $X_{N 1}+\cdots+X_{N i}$ and M_{N} the maximum of $S_{N 1}, \cdots$, $S_{N N}$. With the help of a method used by Erdös and Kac [1], the following theorem is established in §4:

[^0]
[^0]: Presented to the Society, September 4, 1947; received by the editors June 27, 1947.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

