ON THE DISTRIBUTION OF THE MAXIMUM OF SUCCESSIVE CUMULATIVE SUMS OF INDEPENDENTLY BUT NOT IDENTICALLY DISTRIBUTED CHANCE VARIABLES

ABRAHAM WALD

1. Introduction. Let X_1, X_2, \dots , and so on be a sequence of chance variables and let S_i denote the sum of the first i X's, that is,

(1.1)
$$S_i = X_1 + \cdots + X_i$$
 $(i = 1, 2, \cdots, ad inf).$

Let M_N denote the maximum of the first N cumulative sums S_1, \dots, S_N , that is,

$$(1.2) M_N = \max (S_1, \cdots, S_N).$$

The distribution of M_N , in particular the limiting distribution of a suitably normalized form of M_N , has been studied by Erdös and Kac $[1]^1$ and by the author [2] in the special case when the X's are independently distributed with identical distributions.

In this note we shall be concerned with the distribution of M_N when the X's are independent but not necessarily identically distributed. In particular, the mean and variance of X_i may be any functions of i.

In §2 lower and upper limits for M_N are obtained which yield particularly simple limits for the distribution of M_N when the X's are symmetrically distributed around zero.

In §3 the special case is considered when X_i can take only the values 1 and -1 but the probability p_i that $X_i = 1$ may be any function of *i*. The exact probability distribution of M_N for this case is derived and expressed as the first row of a product of N matrices.

The limiting distribution of $M_N/N^{1/2}$ is treated in §4. Since the interesting limiting case arises when the mean of X_i $(i \le N)$ is not only a function of *i* but also a function of *N*, we have to introduce a double sequence of chance variables. That is, for any *N* we consider a sequence of *N* chance variables X_{N1}, \dots, X_{NN} . Let μ_{Ni} denote the mean and σ_{Ni} the standard deviation of X_{Ni} . Let, furthermore, S_{Ni} denote the sum $X_{N1} + \cdots + X_{Ni}$ and M_N the maximum of S_{N1}, \dots, S_{NN} . With the help of a method used by Erdös and Kac [1], the following theorem is established in §4:

Presented to the Society, September 4, 1947; received by the editors June 27, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.