SOME LIMIT THEOREMS

I. M. SHEFFER

1. Introduction. It is a classical result in the theory of trigonometric series that if

$$
\begin{equation*}
c_{n} \cos n x+d_{n} \sin n x \rightarrow 0 \quad(n \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

for all (real) x on a set of positive measure, then

$$
\begin{equation*}
c_{n} \rightarrow 0, \quad d_{n} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

Cantor proved this for the case that set $\{x\}$ is an interval, and Lebesgue established the result for a set of measure zero. A short proof is given by Hardy and Rogosinski. ${ }^{1}$

The following related result was proved and used by Szász. ${ }^{2}$ If

$$
\begin{equation*}
a_{n} \sin n x+b_{n} \sin (n+1) x \rightarrow 0 \tag{1.3}
\end{equation*}
$$

on a (real) set $\{x\}$ of positive measure, then

$$
\begin{equation*}
a_{n} \rightarrow 0, \quad b_{n} \rightarrow 0 \tag{1.4}
\end{equation*}
$$

Relations (1.1) and (1.3) can be put into complex form. For example, (1.1) becomes

$$
\begin{equation*}
a_{n} \exp \{n x\}+b_{n} \exp \{-n x\} \rightarrow 0 \tag{1.5}
\end{equation*}
$$

with the conclusion that

$$
\begin{equation*}
a_{n} \rightarrow 0, \quad b_{n} \rightarrow 0 \tag{1.6}
\end{equation*}
$$

Here $\exp \{u\}$ is defined by

$$
\begin{equation*}
\exp \{u\} \equiv e^{i u} \quad\left(i=(-1)^{1 / 2}\right) \tag{1.7}
\end{equation*}
$$

Our purpose in the present work is to extend the conclusions of the above-mentioned results to combinations more general than (1.3), (1.5). Thus in $\S 2$ we go from two terms to k terms and generalize the exponents; in $\S 3$ the coefficients of the exponentials are permitted

[^0]
[^0]: Presented to the Society, April 26, 1947 under the title A limit theorem; received by the editors May 12, 1947.
 ${ }^{1}$ Hardy and Rogosinski, Fourier series (Cambridge Tracts in Mathematics and Mathematical Physics, no. 38), Theorem 92, p. 84.
 ${ }^{2}$ Otto Szász, On Lebesgue summability and its generalization to integrals, Amer. J. Math. vol. 67 (1945) pp. 389-396, especially Lemma 2, p. 395. Dr. Szász has informed me that, with the intention of using it in work on trigonometric series, he has proved (but not published) a generalization of (1.3), namely where the left side of (1.3) is replaced by the expression $\sum_{s m n}^{n+k} a_{s} e^{i x x}$.

