NOTE ON THE LOCATION OF THE CRITICAL POINTS OF HARMONIC FUNCTIONS

J. L. WALSH

By a limiting process, a theorem recently proved by the writer can be generalized, and yields a new result with interesting applications which we wish to record here. We take as point of departure¹ the following theorem.

THEOREM 1. Let the region R of the extended (x, y)-plane be bounded by a finite number of mutually disjoint Jordan curves $C_0, C_1, C_2, \cdots, C_n$. Let the function u(x, y) be harmonic in R, continuous in the corresponding closed region, equal to zero on C_0 and to unity on C_1, C_2, \cdots, C_n . Denote by R_0 the region bounded by C_0 containing the curves C_1, C_2, \cdots, C_n in its interior; define noneuclidean straight lines in R_0 as the images of arcs of circles orthogonal to the unit circle, when R_0 is mapped conformally onto the interior of the unit circle.

If Π is any non-euclidean convex region in R_0 which contains all the curves C_1 , C_2 , \cdots , C_n , then Π also contains all critical points of u(x, y) in R.

We extend Theorem 1 by admitting arcs of C_0 on which u(x, y) is prescribed to take the value unity, and also by admitting the intersection of curves C_1, C_2, \cdots, C_n with C_0 :

Theorem 2. Let the region R be bounded by the whole or part of the Jordan curve C_0 , and by mutually disjoint Jordan arcs or curves C_1 , C_2, \dots, C_n in the closed interior of C_0 ; some or all of the latter arcs or curves may have points in common with C_0 . Let a finite number of arcs $\alpha_1, \alpha_2, \dots, \alpha_m$ of C_0 belong to the boundary of R and be mutually disjoint. Let the function u(x, y) be harmonic and bounded in R, and take continuously the boundary values unity on C_1, C_2, \dots, C_n , $\alpha_1, \alpha_2, \dots, \alpha_m$ and zero in the remaining boundary points of R, except that in points common to C_0 and $C_1 + C_2 + \dots + C_n$ and in end points of the α_j , no continuous boundary value is required. Denote by R_0 the region bounded by C_0 containing R, and define non-euclidean straight lines in R_0 by mapping R_0 onto the interior of a circle. If Π is any closed region in the closure of R_0 which is non-euclidean convex and which contains $C_1 + C_2 + \dots + C_n + \alpha_1 + \alpha_2 + \dots + \alpha_m$, then Π contains all critical point of u(x, y) in R.

Presented to the Society, April 26, 1947; received by the editors April 21, 1947. ¹ Bull. Amer. Math. Soc. vol. 52 (1946) pp. 346-347.