ON THE ROOTS OF A POLYNOMIAL AND ITS DERIVATIVE

PAUL ERDÖS AND IVAN NIVEN

Let $r_{1}, r_{2}, \cdots, r_{n}$ be the roots of a polynomial $f(z)$ with complex coefficients, and let $R_{1}, R_{2}, \cdots, R_{n-1}$ be the roots of its derivative. N. G. de Bruijn ${ }^{1}$ has proved that

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n}\left|I\left(r_{j}\right)\right| \geqq \frac{1}{n-1} \sum_{j=1}^{n-1}\left|I\left(R_{j}\right)\right| \tag{1}
\end{equation*}
$$

when $f(z)$ has real coefficients; he raises the question whether this holds in general. We prove that this inequality holds when $f(z)$ has complex coefficients; also that (1) is an equality only when the roots of $f(z)$ are not both above and below the real axis. An immediate consequence of this is that if $D_{l}(z)$ represents the (positive) distance from z to any straight line l in the complex plane, then

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} D_{l}\left(r_{j}\right) \geqq \frac{1}{n-1} \sum_{j=1}^{n-1} D_{l}\left(R_{j}\right) \tag{2}
\end{equation*}
$$

with the equality holding only when the r_{j} are not located on both sides of l. Further, if for any point A in the complex plane, $D_{A}(z)$ represents the distance from z to A, then

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} D_{A}\left(r_{j}\right) \geqq \frac{1}{n-1} \sum_{j=1}^{n-1} D_{A}\left(R_{j}\right) \tag{3}
\end{equation*}
$$

with the equality holding only when all the r_{j} lie on a half line emanating from A.

If A is taken as the origin, we have

$$
\frac{1}{n} \sum_{j=1}^{n}\left|r_{j}\right|^{m} \geqq \frac{1}{n-1} \sum_{j=1}^{n-1}\left|R_{j}\right|^{m}
$$

with $m=1$. This inequality, with $m=1,2,3, \cdots$, has been established by H. E. Bray ${ }^{2}$ for the special case in which $f(z)$ is a real

[^0]
[^0]: Presented to the Society, April 26, 1947; received by the editors May 27, 1947.
 ${ }^{1}$ On the zeros of a polynomial and of its derivative, K. Akademie van Wetenschappen, Proceedings vol. 49 (1946) pp. 1037-1044. Added in proof: In a second paper by de Bruijn and T. A. Springer, On the zeros of a polynomial and of its derivative II, Ibid. vol. 50 (1947) pp. 264-270, the results of the present paper are obtained, and the inequality following (3) is obtained for any $m \geqq 1$.
 ${ }^{2}$ On the zeros of a polynomial and its derivative, Amer. J. Math. vol. 53 (1931) pp. 864-872.

