STEINER'S FORMULAE ON A GENERAL S^{n+1}

CARL B. ALLENDOERFER

1. Introduction. Steiner's famous formulae on parallel curves and surfaces have attracted considerable interest recently, several mathematicians having developed various extensions of these theorems $[3,4,6] .{ }^{1}$ As stated by Steiner [5] these formulae have the following form:

Theorem 1. Let C be a convex curve in the plane of length L and area F, and let C_{ρ} be the curve parallel to C at a distance ρ from it (measured outward) with length L_{ρ} and area F_{ρ}; then

$$
L_{\rho}=L+2 \pi \rho, \quad F_{\rho}=F+\rho L+\pi \rho^{2} .
$$

Theorem 2. Let Σ be a convex surface in ordinary space of surface area S, enclosed volume V, and integrated mean curvature M; and let Σ_{ρ} be the surface parallel to Σ at a distance ρ from it (measured outward) with surface S_{ρ} and volume V_{ρ}; then:

$$
S_{\rho}=S+2 M \rho+4 \pi \rho^{2}, \quad V \rho=V+S \rho+M \rho^{2}+4 \pi \rho^{3} / 3
$$

We shall prove the following generalization of these results:
Theorem 3. Let S^{n+1} be a Riemann space of constant curvature, K, differentiable of class C^{3} and complete in the sense of Hopf and Rinow. Let V^{n} be a hypersurface of S^{n+1} which is closed and bounding in S^{n+1} and of class C^{3}, and whose principal curvatures with respect to an outward normal are all negative. The area of V^{n} will be called A and its volume Vol. Its various mean curvatures (to be defined in §3) will be called $M_{i}(i=0, \cdots, n)$. Let V_{ρ}^{n} be a surface parallel to V^{n} at a distance measured along outward drawn geodesics where:

$$
\text { for } K>0: 0 \leqq \rho \leqq \pi / 2 K^{1 / 2} ; \text { and for } K<0: \rho \geqq 0 .
$$

Further let the area and volume of V_{ρ}^{n} be respectively A_{ρ} and Vol_{ρ}. Then for $K>0$:

$$
\begin{aligned}
A_{\rho} & =\sum_{i=0}^{n} M_{i}\left(K^{-1 / 2} \sin \left[\rho K^{1 / 2}\right]\right)^{n-i}\left(\cos \left[\rho K^{1 / 2}\right]\right)^{i} \\
\operatorname{Vol}_{\rho} & =\operatorname{Vol}+\sum_{i=0}^{n} M_{i} \int_{0}^{\rho}\left(K^{-1 / 2} \sin \left[x^{0} K^{1 / 2}\right]\right)^{n-i}\left(\cos \left[x^{0} K^{1 / 2}\right]\right)^{i} d x^{0}
\end{aligned}
$$

[^0]${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

[^0]: Received by the editors April 18, 1947.

