STEINER'S FORMULAE ON A GENERAL Sn+1

CARL B. ALLENDOERFER

1. Introduction. Steiner's famous formulae on parallel curves and surfaces have attracted considerable interest recently, several mathematicians having developed various extensions of these theorems [3, 4, 6].¹ As stated by Steiner [5] these formulae have the following form:

THEOREM 1. Let C be a convex curve in the plane of length L and area F, and let C_{ρ} be the curve parallel to C at a distance ρ from it (measured outward) with length L_{ρ} and area F_{ρ} ; then

$$L_{\rho} = L + 2\pi\rho, \qquad F_{\rho} = F + \rho L + \pi\rho^2.$$

THEOREM 2. Let Σ be a convex surface in ordinary space of surface area S, enclosed volume V, and integrated mean curvature M; and let Σ_{ρ} be the surface parallel to Σ at a distance ρ from it (measured outward) with surface S_{ρ} and volume V_{ρ} ; then:

$$S_{\rho} = S + 2M\rho + 4\pi\rho^2, \quad V_{\rho} = V + S\rho + M\rho^2 + 4\pi\rho^3/3.$$

We shall prove the following generalization of these results:

THEOREM 3. Let S^{n+1} be a Riemann space of constant curvature, K, differentiable of class C^3 and complete in the sense of Hopf and Rinow. Let V^n be a hypersurface of S^{n+1} which is closed and bounding in S^{n+1} and of class C^3 , and whose principal curvatures with respect to an outward normal are all negative. The area of V^n will be called A and its volume Vol. Its various mean curvatures (to be defined in §3) will be called M_i ($i=0, \dots, n$). Let V_p^n be a surface parallel to V^n at a distance measured along outward drawn geodesics where:

for
$$K > 0: 0 \leq \rho \leq \pi/2K^{1/2}$$
; and for $K < 0: \rho \geq 0$.

Further let the area and volume of V_{ρ}^{n} be respectively A_{ρ} and $\operatorname{Vol}_{\rho}$. Then for K > 0:

$$A_{\rho} = \sum_{i=0}^{n} M_{i} (K^{-1/2} \sin \left[\rho K^{1/2}\right])^{n-i} (\cos \left[\rho K^{1/2}\right])^{i},$$

$$\operatorname{Vol}_{\rho} = \operatorname{Vol} + \sum_{i=0}^{n} M_{i} \int_{0}^{\rho} (K^{-1/2} \sin \left[x^{0} K^{1/2}\right])^{n-i} (\cos \left[x^{0} K^{1/2}\right])^{i} dx^{0};$$

Received by the editors April 18, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.