ON A CON JECTURE OF CARMICHAEL

V. L. KLEE, JR. ${ }^{1}$

Carmichael [1] ${ }^{2}$ conjectured that for no integer n can the equation $\phi(x)=n$ (ϕ being Euler's totient) have exactly one solution. To support the conjecture, he showed that each n for which there is a unique solution must satisfy a restriction which implies $n>10^{37}$. In this note we prove the validity of restrictions considerably stronger than those of Carmichael, and raise the lower bound on n to 10^{400}.

We shall denote by X the set of all integers x for which $\phi(y)=\phi(x)$ implies $y=x$. (If the conjecture is correct, X is empty, and the theorems stated are vacuously satisfied.)
(1) Theorem. Suppose that $\bar{x}=\prod_{A} p_{i}^{a_{i}}$ is in X, where the p_{i} 's are distinct primes and A is the range of the index i. Let $m=\prod_{B} p_{i}^{a_{i}-1}\left(p_{i}-1\right)$

- Пcp $p_{i}^{c_{i}}$ where B and C are disjoint subsets of A (one of them may be empty) and $c_{i} \leqq a_{i}-1$ for i in C. Then if p is prime and $p-1=m$, we have $p \mid \bar{x}$.
 the definition of X.
(1.1) Corollary. Suppose, under the hypotheses of (1), that B has the following property: if q is prime and $q \mid\left(p_{j}-1\right)$ for some j in B, then $q \mid \bar{x}$. We must then have $p^{2} \mid \bar{x}$.

For under this condition we have $p-1=\prod_{D} p_{i}^{d_{i}}, D$ being a subset of A. So if $p \mid \bar{x}$ but $p^{2} \nmid \bar{x}$, then $\phi\left(\prod_{A-D} p_{i}^{a_{i}} \cdot \prod_{D} p_{i}^{a_{i}+d_{i}} / p\right)=\phi(\bar{x})$, contrary to the definition of X.
(1.2) Corollary. If, in the hypotheses of (1), B is empty, we have $p^{2} \mid \bar{x}$.
(1.3) Corollary. $4 \mid \bar{x}$. If f is a Fermat prime such that $f \mid \bar{x}$, then $f^{2} \mid \bar{x}$.
(1.2) and (1.3) are Carmichael's original conditions. From (1.1) and (1.3) it follows that \bar{x} is divisible by $3^{2}, 7^{2}, 43^{2}, 3^{3}$ or $13^{2}, \cdots$. (By extending this list Carmichael showed both \bar{x} and $\phi(\bar{x})$ to be greater than 10^{37}.)

[^0]
[^0]: Presented to the Society, October 25, 1947; received by the editors December 12, 1946, and, in revised form, April 5, 1947.
 ${ }^{1}$ I should like to thank Professor C. G. Jaeger of Pomona College for arousing my interest in Euler's ϕ-function.
 ${ }^{2}$ Numbers in brackets refer to the references at the end of the paper.

