ON A CONJECTURE OF CARMICHAEL

V. L. KLEE, JR.¹

Carmichael $[1]^2$ conjectured that for no integer *n* can the equation $\phi(x) = n$ (ϕ being Euler's totient) have exactly one solution. To support the conjecture, he showed that each *n* for which there is a unique solution must satisfy a restriction which implies $n > 10^{37}$. In this note we prove the validity of restrictions considerably stronger than those of Carmichael, and raise the lower bound on *n* to 10^{400} .

We shall denote by X the set of all integers x for which $\phi(y) = \phi(x)$ implies y = x. (If the conjecture is correct, X is empty, and the theorems stated are vacuously satisfied.)

(1) THEOREM. Suppose that $\bar{x} = \prod_A p_i^{a_i}$ is in X, where the p_i 's are distinct primes and A is the range of the index i. Let $m = \prod_B p_i^{a_i-1}(p_i-1)$ $\cdot \prod_C p_i^{c_i}$ where B and C are disjoint subsets of A (one of them may be empty) and $c_i \leq a_i - 1$ for i in C. Then if p is prime and p-1=m, we have $p \mid \bar{x}$.

For if $p \nmid \bar{x}$, we have $\phi(p \cdot \prod_{A-B-C} p_i^{a_i} \cdot \prod_C p_i^{a_i-c_i}) = \phi(\bar{x})$, contrary to the definition of X.

(1.1) COROLLARY. Suppose, under the hypotheses of (1), that B has the following property: if q is prime and $q|(p_j-1)$ for some j in B, then $q|\bar{x}$. We must then have $p^2|\bar{x}$.

For under this condition we have $p-1 = \prod_{D} p_i^{d_i}$, *D* being a subset of *A*. So if $p | \bar{x}$ but $p^2 \nmid \bar{x}$, then $\phi(\prod_{A-D} p_i^{a_i} \cdot \prod_{D} p_i^{a_i+d_i}/p) = \phi(\bar{x})$, contrary to the definition of *X*.

(1.2) COROLLARY. If, in the hypotheses of (1), B is empty, we have $p^2 | \bar{x}$.

(1.3) COROLLARY. 4 $|\bar{x}$. If f is a Fermat prime such that $f|\bar{x}$, then $f^2|\bar{x}$.

(1.2) and (1.3) are Carmichael's original conditions. From (1.1) and (1.3) it follows that \bar{x} is divisible by 3^2 , 7^2 , 43^2 , 3^3 or 13^2 , \cdots . (By extending this list Carmichael showed both \bar{x} and $\phi(\bar{x})$ to be greater than 10^{37} .)

Presented to the Society, October 25, 1947; received by the editors December 12, 1946, and, in revised form, April 5, 1947.

 $^{^1}$ I should like to thank Professor C. G. Jaeger of Pomona College for arousing my interest in Euler's ϕ -function.

² Numbers in brackets refer to the references at the end of the paper.