# PAIRS OF INVERSE MODULES IN A SKEWFIELD 

F. W. LEVI

Let $\Sigma$ be a skewfield. If $J$ and $J^{\prime}$ are submodules of $\Sigma$ such that the nonzero elements of $J$ are the inverse elements of those of $J^{\prime}$, then $J$ and $J^{\prime}$ form a "pair of inverse modules." A module admitting an inverse module will be called a $J$-module and a selfinverse module containing 1 will be called an $S$-module. In an earlier paper ${ }^{1}$ the author has shown that if $\Sigma$ is a (commutative) field of characteristic not equal to 2 , then every $S$-module is a subfield of $\Sigma$. Only in fields of characteristic 2 , nontrivial $S$-modules can be found. A corresponding distinction of that characteristic does not hold for skewfields. Even the skewfield of the quaternions contains nontrivial $S$-modules, for examples the module generated by $1, j, k$. In the present paper some properties of $S$-modules and $J$-modules will be discussed. For example it will be proved that when an $S$-module contains the elements $a, b$ and $a b$, it contains all the elements of the skewfield which is generated by $a$ and $b$. By a similar method it will be shown that finite $S$-modules are necessarily Galois-fields.

## 1. Necessary and sufficient conditions for $J$-modules.

Theorem 1. A submodule $J$ of $\Sigma$ is a J-module if and only if $a \in J$ and $b \neq 0 \in J$ imply $a b^{-1} a \in J$.

Proof. Let $J$ be a $J$-module. Without loss of generality suppose that $a \neq 0, b-a=c \neq 0$. Then $k=a^{-1}+c^{-1} \in J^{\prime}$ since $J^{\prime}$ is closed under addition and subtraction. As $k=a^{-1}(c+a) c^{-1}, k^{-1}=c b^{-1} a$; hence $a-k^{-1}=a b^{-1} a$ is contained in $J$. Let now $J$ be a module satisfying the condition mentioned above. To prove that $J$ is a $J$-module, we shall show that when $a$ and $c$ are nonzero elements in $J$, but otherwise arbitrary, then $a^{-1}+c^{-1}$ is either 0 or the inverse of an element of $J$. The first alternative holds when $b=a+c=0$; if however $b \neq 0$, then $a^{-1}+c^{-1}=\left(a-a b^{-1} a\right)^{-1}$ is the inverse of an element of $J$. Hence the theorem.

Corollary 1. The meet of any (finite or infinite) set of J-modules in $\Sigma$ is a J-module in $\Sigma$.

This corollary shows that the $J$-modules in $\Sigma$ form a lattice with the set-inclusion as the defining order-relation. $J_{1} \wedge J_{2}$ denotes the ordi-
${ }^{1}$ Pairs of inverse moduls, J. Indian Math. Soc. N.S. vol. 3 (1936) pp. 295-306.

