A NOTE ON THE DERIVATIVES OF INTEGRAL FUNCTIONS

S. M. SHAH

1. Introduction. Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an integral function of order ρ and lower order λ, and $M(r)=\max _{|z|=r}|f(z)| ; M^{\prime}(r)=\max _{|z|=r}\left|f^{\prime}(z)\right|$. In a recent paper $[1]^{1} I$ have proved the following two theorems.

Theorem A. If $f(z)$ be any integral function of order ρ then ${ }^{2}$

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log \left\{r M^{\prime}(r) / M(r)\right\}}{\log r}=\rho . \tag{1.1}
\end{equation*}
$$

Theorem B. If $f(z)=\sum a_{n} z^{n}$ be an integral function of lower order λ and $a_{n} \geqq 0$ then

$$
\liminf _{r \rightarrow \infty} \frac{\log \left\{r M^{\prime}(r) / M(r)\right\}}{\log r}=\lambda
$$

The condition that the coefficients a_{n} be real and non-negative is unnecessary. The purpose of this note is to prove the following two theorems and to deduce a number of interesting results.

THEOREM 1. If $f(z)$ be an integral function of lower order $\lambda(0 \leqq \lambda \leqq \infty)$ then

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log \left\{r M^{\prime}(r) / M(r)\right\}}{\log r}=\lambda \tag{1.2}
\end{equation*}
$$

Theorem 2. For any integral function $f(z)$ we have

$$
\begin{align*}
\liminf _{r \rightarrow \infty} M^{\prime}(r) / M(r) & \leqq \liminf _{r \rightarrow \infty} \nu(r) / r \leqq \limsup _{r \rightarrow \infty} \nu(r) / r \\
& \leqq \limsup _{r \rightarrow \infty} M^{\prime}(r) / M(r) \tag{1.3}
\end{align*}
$$

$$
\liminf _{r \rightarrow \infty} M^{(s+1)}(r) / M^{(s)}(r) \leqq \liminf _{r \rightarrow \infty} \nu(r) / r \leqq \limsup _{r \rightarrow \infty} \nu(r) / r
$$

$$
\leqq \limsup _{r \rightarrow \infty} M^{(s+1)}(r) / M^{(s)}(r) \quad(s=1,2,3, \cdots)
$$

where $f^{(s)}(z)$ is the sth derivative of $f(z), M^{(s)}(r)=\max _{|z|=r}\left|f^{(s)}(z)\right|$
Received by the editors January 6, 1947, and, in revised form, April 1, 1947.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.
${ }^{2}$ A glance at the proof [1, pp. 1-2] shows that the result (1.1) holds when ρ is infinite. An alternative proof of Theorem A is to employ Lemma 4 and relation (8) of my paper [1, p. 1].

