ON THE SUM OF THE RELATIVE EXTREMA OF |f(z)|ON THE UNIT CIRCLE

ROBERT BREUSCH

Summary and introduction. Dr. Erdös has made the following conjecture: "Let $f(z) = \prod_{\nu=1}^{n} (z-z_{\nu})$, with $z_{\nu} = r_{\nu} e^{i\theta_{\nu}}$, $r_{\nu} \leq 1$, $f(z) \neq z^{n}$. Let $z_{\mu} = e^{i\theta_{\mu}} (\mu = 1, 2, \dots, k)$ be the points on the circumference of the unit circle, for which |f(z)| is a relative extremum. Then $\sum_{\mu=1}^{k} |f(z_{\mu})| \leq 2^{n}$, and the equal sign applies only if $f(z) = (z - e^{i\theta_{0}})^{n}$." It will be proved that this is correct for large values of n, but incorrect for small ones.

With $z = e^{i\theta}$,

$$|f(z)|^{2} = \prod_{\nu=1}^{n} |e^{i\theta} - r_{\nu}e^{i\theta_{\nu}}|^{2} = \prod_{\nu=1}^{n} [1 + r_{\nu}^{2} - 2r_{\nu}\cos(\theta - \theta_{\nu})],$$

or, with
$$t = \tan (\theta/2)$$
,
 $|f(z)|^2 = F(t) = (1 + t^2)^{-n}$
 $\cdot \prod_{\nu=1}^n [(1 + r_{\nu}^2 + 2r_{\nu}\cos\theta_{\nu})t^2 - 4r_{\nu}\sin\theta_{\nu}t + (1 + r_{\nu}^2 - 2r_{\nu}\cos\theta_{\nu})],$
 $F(t) = \frac{At^{2n} + \cdots}{(1 + t^2)^n},$
 $F'(t) = \frac{(1 + t^2)(2nAt^{2n-1} + \cdots) - 2nt(At^{2n} + \cdots)}{(1 + t^2)^{n+1}} = \frac{Bt^{2n} + \cdots}{(1 + t^2)^{n+1}}.$

It may be assumed for the moment that $|f(e^{i\theta})|$ is not an extremum for $\theta = \pi$, that is, $t = \infty$; otherwise the coordinate system may be rotated. Thus it is seen that the number of relative extrema of |f(z)|on the unit circle cannot exceed 2n.

If $|f(e^{i\theta})|$ is less than $2^n/2n$ for every real value of θ , then $\sum_{\mu=1}^{k} |f(e^{i\theta}\mu)|$ is obviously less than 2^n .

Assume now that |f(z)| has a relative extremum at z=1, and that $|f(1)| \ge 2^n/2n$. The proof then proceeds in the following steps: It will be shown, that for large values of n:

(1) All but o(n) roots must be in a region R_1 of the unit circle close to z = -1.

(2) There is an arc T of the circumference of the unit circle, close to z = +1, such that the sum of all the extreme values of $|f(e^{i\theta})|$ with $e^{i\theta}$ not on T is $O(2^n/n)$.

Received by the editors November 29, 1946, and, in revised form, March 21, 1947.