ON THE SUM OF THE RELATIVE EXTREMA OF $|f(z)|$ ON THE UNIT CIRCLE

ROBERT BREUSCH

Summary and introduction. Dr. Erdös has made the following
 $z_{\mu}=e^{i \theta_{\mu}}(\mu=1,2, \cdots k)$ be the points on the circumference of the unit circle, for which $|f(z)|$ is a relative extremum. Then $\sum_{\mu=1}^{k}\left|f\left(z_{\mu}\right)\right| \leqq 2^{n}$, and the equal sign applies only if $f(z)=\left(z-e^{i \theta_{0}}\right)^{n}$." It will be proved that this is correct for large values of n, but incorrect for small ones.

With $z=e^{i \theta}$,

$$
|f(z)|^{2}=\prod_{\nu=1}^{n}\left|e^{i \theta}-r_{\nu} e^{i \theta_{\nu}}\right|^{2}=\prod_{\nu=1}^{n}\left[1+r_{\nu}^{2}-2 r_{\nu} \cos \left(\theta-\theta_{\nu}\right)\right]
$$

or, with $t=\tan (\theta / 2)$,

$$
\begin{aligned}
|f(z)|^{2} & \equiv F(t)=\left(1+t^{2}\right)^{-n} \\
& \cdot \prod_{\nu=1}^{n}\left[\left(1+r_{\nu}^{2}+2 r_{\nu} \cos \theta_{\nu}\right) t^{2}-4 r_{\nu} \sin \theta_{\nu} t+\left(1+r_{\nu}^{2}-2 r_{\nu} \cos \theta_{\nu}\right)\right], \\
F(t)= & \frac{A t^{2 n}+\cdots}{\left(1+t^{2}\right)^{n}}, \\
F^{\prime}(t)= & \frac{\left(1+t^{2}\right)\left(2 n A t^{2 n-1}+\cdots\right)-2 n t\left(A t^{2 n}+\cdots\right)}{\left(1+t^{2}\right)^{n+1}}=\frac{B t^{2 n}+\cdots}{\left(1+t^{2}\right)^{n+1}} .
\end{aligned}
$$

It may be assumed for the moment that $\left|f\left(e^{i \theta}\right)\right|$ is not an extremum for $\theta=\pi$, that is, $t=\infty$; otherwise the coordinate system may be rotated. Thus it is seen that the number of relative extrema of $|f(z)|$ on the unit circle cannot exceed $2 n$.
If $\left|f\left(e^{i \theta}\right)\right|$ is less than $2^{n} / 2 n$ for every real value of θ, then $\sum_{\mu=1}^{k}\left|f\left(e^{i \theta_{\mu}}\right)\right|$ is obviously less than 2^{n}.

Assume now that $|f(z)|$ has a relative extremum at $z=1$, and that $|f(1)| \geqq 2^{n} / 2 n$. The proof then proceeds in the following steps: It will be shown, that for large values of n :
(1) All but $o(n)$ roots must be in a region R_{1} of the unit circle close to $z=-1$.
(2) There is an arc T of the circumference of the unit circle, close to $z=+1$, such that the sum of all the extreme values of $\left|f\left(e^{i \theta}\right)\right|$ with $e^{i \theta}$ not on T is $O\left(2^{n} / n\right)$.

Received by the editors November 29, 1946, and, in revised form, March 21, 1947.

