## A BOUND FOR THE ERROR IN COMPUTING THE BESSEL FUNCTIONS OF THE FIRST KIND BY RECURRENCE

## H. E. GOHEEN

It is sometimes useful to obtain the value of a Bessel function of the first kind of a fairly high integral order. Inasmuch as $J_{0}(x)$ and $J_{1}(x)$ are relatively easy to compute, even apart from the existence of numerous tables of $J_{0}(x)$ and $J_{1}(x)$ to considerable accuracy, one obvious method of attack is to use the recurrence relation,

$$
\begin{equation*}
J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x) \tag{1}
\end{equation*}
$$

the starting values being the already available values of $J_{0}(x)$ and $J_{1}(x)$. In using this formula, however, it is necessary to have a bound for the error in $J_{n}(x)$ caused by errors in $J_{0}(x)$ and $J_{1}(x)$. It is the purpose of this note to furnish such a bound.

Let $e_{n}(x)$ represent the difference between the value of $J_{n}(x)$ and the approximate value obtained by applying (1) to values which differ from $J_{0}(x)$ and $J_{1}(x)$ by errors $e_{0}(x)$ and $e_{1}(x)$, respectively. Since $e_{n}(x)$ is additive to the approximate value and since both the approximate and true values satisfy the recurrence formula, $e_{n}(x)$ must also satisfy the recurrence formula.

If exact values of $e_{0}(x)$ and $e_{1}(x)$ were known, an exact value of $e_{n}(x)$ could be obtained by the recurrence relation (1). However, by the nature of the problem bounds for the absolute values of $e_{0}(x)$ and $e_{1}(x)$, and in some cases their signs, are the only information available. These bounds cannot be used as starting values for recurrence to find a bound to the absolute value of $e_{n}(x)$ since in the relation (1) a substitution of the bounds on the right-hand side may yield a result whose absolute value is well within the bound for the absolute value of the left-hand side.

In the relation due to Lommel and Hankel, ${ }^{1}$

$$
\begin{equation*}
2 / \pi x=Y_{n}(x) J_{n+1}(x)-Y_{n+1}(x) J_{n}(x), \tag{2}
\end{equation*}
$$

$Y_{n}(x)$ being the customary Bessel function of the second kind of order $n$, setting $n=0$, multiplying both sides by $(\pi x / 2) e_{0}(x)$, adding the null term $(\pi x / 2) e_{1}(x) Y_{0}(x) J_{0}(x)-(\pi x / 2) e_{1}(x) Y_{0}(x) J_{0}(x)$ and rearranging the terms give

[^0]
[^0]:    Presented to the Society, November 2, 1946; received by the editors November 20, 1946, and, in revised form, March 22, 1947.
    ${ }^{1}$ Watson, G. N., A treatise on the theory of Bessel functions, 2d ed., 1944, p. 77.

