CONGRUENCE PROPERTIES OF

 RAMANUJAN'S FUNCTION $\tau(n)$
R. P. BAMBAH and S. CHOWLA

Introduction. With Ramanujan we define $\tau(n)$ by

$$
\sum_{1}^{\infty} \tau(n) x^{n}=x \prod_{1}^{\infty}\left(1-x^{n}\right)^{24} \quad(|x|<1)
$$

Write $\sigma_{k}(n)$ for the sum of the k th powers of the divisors of n; $\sigma(n)=\sigma_{1}(n)$. It is known that ${ }^{1}$

$$
\begin{aligned}
\tau(n) \equiv n \sigma(n)(\bmod 5), & \\
\tau(n) \equiv \sigma(n)(\bmod 3) & \text { if }(n, 3)=1
\end{aligned}
$$

The object of this note is to give proofs of the much stronger results:

$$
\begin{equation*}
\tau(n) \equiv 5 n^{2} \sigma_{7}(n)-4 n \sigma_{9}(n)\left(\bmod 5^{3}\right) \tag{A}
\end{equation*}
$$

when n is prime to 5 ;

$$
\begin{equation*}
\tau(n) \equiv\left(n^{2}+k\right) \sigma_{7}(n)\left(\bmod 3^{4}\right) \tag{B}
\end{equation*}
$$

when n is prime to 3 and where $k=0$ if $n \equiv 1(3), k=9$ if $n \equiv 2(3)$.

1. Some lemmas.

Lemma 1. We have

$$
\sum u \sigma_{3}(u) \sigma_{5}(v) \equiv \sum \sigma(u) \sigma(v)-P(n)(\bmod 5)
$$

where

$$
P(n)=\sum_{u \equiv 0(\bmod 5)} \sigma(u) \sigma(v)
$$

where $u+v=n ; u, v \geqq 1$ in all three sums (\sum).
Proof. We have

$$
\begin{equation*}
u \sigma_{3}(u) \sigma_{5}(v) \equiv 0(\bmod 5) \quad \text { when } \quad u \equiv 0(5) ; \tag{1}
\end{equation*}
$$

when $(u, 5)=1$ we have

Received by the editors April 7, 1947.
${ }^{1}$ The first of these is proved in Hardy's Ramanujan (Cambridge, 1940); the second by Gupta in J. Indian Math. Soc. vol. 9 (1945) pp. 59-60. In what follows we refer to Ramanujan's Collected papers (Cambridge, 1927) by the letters RCP. We have also proved that $\tau(n) \equiv \sigma_{11}(n)\left(\bmod 2^{8}\right)$ if n is odd; this result has been accepted for publication in J. London Math. Soc.

