SOME INEQUALITIES RELATING TO CONFORMAL MAPPING UPON CANONICAL SLIT-DOMAINS

BERNARD EPSTEIN

Let D be a domain of the extended z-plane $(z=x+i y)$ of finite connectivity n, which contains the point $z=\infty$ and is bounded by n proper ${ }^{1}$ continua. According to a fundamental theorem in the theory of conformal mapping of multiply-connected domains $[4,7]^{2}$ there exists one and only one function $\zeta=s_{\theta}(z)$ which in the neighborhood of $z=\infty$ has a Laurent expansion of the form

$$
\begin{equation*}
\zeta=s_{\theta}(z)=z+\frac{a_{\theta}}{z}+\cdots \tag{1}
\end{equation*}
$$

and which maps D conformally and bi-uniformly upon a domain D_{θ} of the ζ-plane bounded by n rectilinear slits each of which makes the angle θ with the positive direction of the real axis. The domain D_{θ} is itself also uniquely determined for each value of θ.

In the present paper we shall derive two inequalities involving the coefficient a_{θ} appearing in (1) and the outer measure A of the complement (with respect to the entire plane) of the domain D that is, the greatest lower bound of the total area enclosed by a set of analytic curves surrounding the boundary continua. The first of these inequalities is the following:

$$
\begin{equation*}
\operatorname{Re}\left(a_{\theta} e^{-2 i \theta}\right) \geqq \frac{A}{2 \pi} . \tag{2}
\end{equation*}
$$

The second inequality, which will be derived by using the theory of orthonormal systems of analytic functions [1, 2, 9, 10] , constitutes a strengthening of (2), namely:

$$
\begin{equation*}
\operatorname{Re}\left(a_{\theta} e^{-2 i \theta}\right)-\frac{\left|a_{\theta}\right|^{2}}{a_{0}-a_{\pi / 2}} \geqq \frac{A}{2 \pi} . \tag{3}
\end{equation*}
$$

It suffices to prove the inequalities (2) and (3) for the case when the boundary continua of D are closed analytic curves C_{1}, C_{2}, \cdots, C_{n}, for it is known that D can be approximated by an increasing sequence of domains having such boundaries for which the mapping functions corresponding to (1) will converge to $s_{\theta}(z)$, so that (2) and

[^0]
[^0]: Presented to the Society, April 26, 1947; received by the editors May 3, 1947.
 ${ }^{1}$ A proper continuum is one which does not consist of a single point.
 ${ }^{2}$ Numbers in brackets refer to the bibliography at the end of the paper.

