SOME INEQUALITIES RELATING TO CONFORMAL MAPPING UPON CANONICAL SLIT-DOMAINS

BERNARD EPSTEIN

Let *D* be a domain of the extended z-plane (z=x+iy) of finite connectivity *n*, which contains the point $z = \infty$ and is bounded by *n* proper¹ continua. According to a fundamental theorem in the theory of conformal mapping of multiply-connected domains $[4, 7]^2$ there exists one and only one function $\zeta = s_{\theta}(z)$ which in the neighborhood of $z = \infty$ has a Laurent expansion of the form

(1)
$$\zeta = s_{\theta}(z) = z + \frac{a_{\theta}}{z} + \cdots$$

and which maps D conformally and bi-uniformly upon a domain D_{θ} of the ζ -plane bounded by n rectilinear slits each of which makes the angle θ with the positive direction of the real axis. The domain D_{θ} is itself also uniquely determined for each value of θ .

In the present paper we shall derive two inequalities involving the coefficient a_{θ} appearing in (1) and the outer measure A of the complement (with respect to the entire plane) of the domain D that is, the greatest lower bound of the total area enclosed by a set of analytic curves surrounding the boundary continua. The first of these inequalities is the following:

The second inequality, which will be derived by using the theory of orthonormal systems of analytic functions [1, 2, 9, 10], constitutes a strengthening of (2), namely:

(3)
$$\operatorname{Re} \left(a_{\theta}e^{-2i\theta}\right) - \frac{|a_{\theta}|^2}{a_0 - a_{\pi/2}} \geq \frac{A}{2\pi}$$

It suffices to prove the inequalities (2) and (3) for the case when the boundary continua of D are closed analytic curves C_1, C_2, \cdots , C_n , for it is known that D can be approximated by an increasing sequence of domains having such boundaries for which the mapping functions corresponding to (1) will converge to $s_{\theta}(z)$, so that (2) and

Presented to the Society, April 26, 1947; received by the editors May 3, 1947.

¹ A proper continuum is one which does not consist of a single point.

² Numbers in brackets refer to the bibliography at the end of the paper.