SOME GENERALIZED HYPERGEOMETRIC POLYNOMIALS

SISTER MARY CELINE FASENMYER

1. Introduction. We shall obtain some basic formal properties of the hypergeometric polynomials

$$
\begin{align*}
f_{n}\left(a_{i} ; b_{j} ; x\right) & \equiv f_{n}\left(a_{1}, a_{2}, \cdots, a_{p} ; b_{1}, b_{2}, \cdots, b_{q} ; x\right) \\
& \equiv{ }_{p+2} F_{q+2}\left[\begin{array}{ccc}
-n, n+1, & a_{1}, \cdots, a_{p} ; \\
1 / 2, & 1, & b_{1}, \cdots, b_{q} ;
\end{array}\right] \tag{1}
\end{align*}
$$

(n a non-negative integer) in an attempt to unify and to extend the study of certain sets of polynomials which have attracted considerable attention. Some special cases of the $f_{n}\left(a_{i} ; b_{j} ; x\right)$ are $:^{1}$
(a) $f_{n}(1 / 2 ;-; x)=P_{n}(1-2 x)$ (Legendre).
(b) $f_{n}(1 ;-x)=\left[n!/(1 / 2)_{n}\right] P_{n}^{(-1 / 2,1 / 2)}(1-2 x)$ (Jacobi).
(c) $f_{n}(1,1 / 2 ; b ; x)=\left[n!/(b)_{n}\right] P_{n}^{(b-1,1-b)}(1-2 x)$ (Jacobi).
(d) $f_{n}(1 / 2, \zeta ; p ; v)=H_{n}(\zeta, p, v)[12]$.
(e) $f_{n}[1 / 2,(1+z) / 2 ; 1 ; 1]=F_{n}(z)[3]$.
(f) $f_{n}(1 / 2 ; 1 ; t)=Z_{n}(t)[4]$.
(g) $f_{n}[1 / 2,(z+m+1) / 2 ; m+1 ; 1]=F_{n}^{m}(z)[8]$.
2. A generating function. Let $G(y)$ be analytic at $y=0$,

$$
G(y)=\sum_{n=0}^{\infty} c_{n} y^{n}
$$

and define $f_{n}(x)$ by the relation

$$
\begin{equation*}
\frac{1}{1-w} G\left[\frac{-4 x w}{(1-w)^{2}}\right]=\sum_{n=0}^{\infty} f_{n}(x) w^{n} . \tag{2}
\end{equation*}
$$

If w is sufficiently small, the left member of (2) may be expanded in an absolutely convergent double series and rearranged so as to give a convergent power series in w. Let that be done. Then it is easily shown that

$$
\begin{equation*}
f_{n}(x)=\sum_{r=0}^{n} \frac{(-n)_{r}(n+1)_{r} c_{r} x^{r}}{(1 / 2)_{r} r!} \tag{3}
\end{equation*}
$$

in which $(a)_{r}=a(a+1) \cdots(a+r-1) ;(a)_{0}=1$.
Received by the editors September 16, 1946, and, in revised form, February 24, 1947.
${ }^{1}$ A dash indicates the absence of parameters. A number in brackets relates to the references.

