ON RELATIONS EXISTING BETWEEN TWO KERNELS

OF THE FORM $(a, b)+b$ AND $(b, a)+b$

P. HEBRONI

Let s and t be variables in the interval from 0 to 1 , and let a, b, c, \cdots, be functions of s and t. Putting, as is customary,

$$
(a, b)=\int_{0}^{1} a(s \lambda) b(\lambda t) d \lambda,
$$

we have

$$
\begin{aligned}
(a \pm b, c) & =(a, c) \pm(b, c) \\
(a, b \pm c) & =(a, b) \pm(a, c) \\
((a, b), c) & =(a,(b, c))=(a, b, c)
\end{aligned}
$$

From this follows readily the meaning of (a, b, c, d). Putting, again,

$$
[a, b]=a+(a, b)+b
$$

we have

$$
[0, a]=a, \quad[a, 0]=a, \quad[[a, b], c]=[a,[b, c]]=[a, b, c]
$$

We put finally,

$$
\{a, b, c\}=(a, b, c)+(a, b)+(b, c)+b
$$

The function a is said to be reciprocable if there exists a function \bar{a} such that

$$
\begin{equation*}
[a, \bar{a}]=0 \quad \text { and } \quad[\bar{a}, a]=0 \tag{}
\end{equation*}
$$

(Each of these equations, it is well known, implies the other.) We say then that \bar{a} is the reciprocal of a. If a is reciprocable, then so is \bar{a}, and the reciprocal of \bar{a} is a. In what follows we shall designate the Fredholm determinant of a function a by D_{a}, and the reciprocal of a by \bar{a}. Of the various relationships that exist among the symbols (a, b), $(a, b, c),[a, b],[a, b, c]$ and $\{a, b, c\}$, we state here the following:

$$
\begin{align*}
& {[a, b, c]=\{a, b, c\}+[a, c]} \tag{1}\\
& {[a, b, \bar{a}]=\{a, b, \bar{a}\}} \tag{2}
\end{align*}
$$

The following relations also hold true:
(α) $\{a, b, 0\}=(a, b)+b\{0, a, b\}=(a, b)+a\{a, 0, b\}=0$,

