LATTICES OF CONTINUOUS FUNCTIONS

IRVING KAPLANSKY

1. Introduction. Let X be a compact (=bicompact) Hausdorff space and $C(X)$ the set of real continuous functions on X. By defining addition and multiplication pointwise, we convert $C(X)$ into a ring. With the norm $\|f\|=\sup |f(x)|, C(X)$ becomes a Banach space. Finally, we may introduce an ordering by defining $f \geqq g$ to mean $f(x) \geqq g(x)$ for all x; this makes $C(X)$ a lattice.

Gelfand and Kolmogoroff [6] ${ }^{1}$ showed that, as a ring alone, $C(X)$ characterizes X. More precisely, if $C(X)$ and $C(Y)$ are isomorphic rings, then X and Y are homeomorphic. Banach [3, p. 170] proved that $C(X)$ as a Banach space characterizes X, if X is compact metric. Stone [5, p. 469] generalized this to any compact Hausdorff space, and Eilenberg [5] and Arens and Kelley [2] have since given other proofs. Finally, Stone [9] has shown that as a lattice-ordered group, $C(X)$ characterizes X. A negative result is that $C(X)$ as a topological linear space fails to characterize X [3, p. 184].

In this paper we shall prove the following result: as a lattice alone $C(X)$ characterizes X. This theorem is shown in $\S 5$ to subsume all the earlier results cited above. Moreover in this context we can replace the reals by an arbitrary chain, granted a suitable separation axiom. In $\S 4$ it is shown that the connectedness of X is equivalent to the indecomposability of $C(X)$ as a lattice.

I am greatly indebted to Professor A. N. Milgram for suggestions which led to a substantial simplification of my proof of Theorem 1.
2. Main theorem. Let R be a chain (simply ordered set). Until §6 it will be assumed that R has neither a minimal nor maximal element. There is a natural way of topologizing R [4, p. 27] which can be described as follows: for any $\alpha \in R$ let $U(\alpha)$ be the set of all $\beta \in R$ with $\beta>\alpha, L(\alpha)$ the set of all β with $\beta<\alpha$; then the U 's and L 's form a subbase of the open sets.

Lemma 1. If $\alpha, \beta \in R$ and $\alpha>\beta$, then there exist neighborhoods M, N of α, β such that $\gamma>\delta$ for all $\gamma \in M, \delta \in N$.

Proof. If there exists ξ with $\alpha>\xi>\beta$ we take $M=U(\xi), N=L(\xi)$. If not, we take $M=U(\beta), N=L(\alpha)$.

Received by the editors January 2, 1947.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

