NOTE ON HADAMARD'S DETERMINANT THEOREM

JOHN WILLIAMSON

Introduction. We shall call a square matrix A of order n an Hadamard matrix or for brevity an H-matrix, if each element of A has the value ± 1 and if the determinant of A has the maximum possible value $n^{n / 2}$. It is known that such a matrix A is an H-matrix [1] ${ }^{1}$ if, and only if, $A A^{\prime}=n E_{n}$ where A^{\prime} is the transpose of A and E_{n} is the unit matrix of order n. It is also known that, if an H-matrix of order $n>1$ exists, n must have the value 2 or be divisible by 4 . The existence of an H-matrix of order n has been proved [2,3] only for the following values of $n>1:$ (a) $n=2$, (b) $n=p^{h}+1 \equiv 0 \bmod 4, p$ a prime, (c) n $=m\left(p^{h}+1\right)$ where $m \geqq 2$ is the order of an H-matrix and p is a prime, (d) $n=q(q-1)$ where q is a product of factors of types (a) and (b), (e) $n=172$ and for n a product of any number of factors of types (a), (b), (c), (d) and (e).

In this note we shall show that an H-matrix of order n also exists when (f) $n=q(q+3)$ where q and $q+4$ are both products of factors of types (a) and (b), (g) $n=n_{1} n_{2}\left(p^{h}+1\right) p^{h}$, where $n_{1}>1$ and $n_{2}>1$ are orders of H-matrices and p is an odd prime, and (h) $n=n_{1} n_{2} m(m+3)$ where $n_{1}>1$ and $n_{2}>1$ are orders of H-matrices and m and $m+4$ are both of the form $p^{h}+1, p$ an odd prime.

It is interesting to note the presence of the factors n_{1} and n_{2} in the types (g) and (h) and their absence in the types (d) and (f). Thus, if p is a prime and $p^{h}+1 \equiv 0 \bmod 4$, an H-matrix of order $p^{h}\left(p^{h}+1\right)$ exists but, if $p^{h}+1 \equiv 2 \bmod 4$, we can only be sure of the existence of an H-matrix of order $n_{1} n_{2} p^{h}\left(p^{h}+1\right)$ where $n_{1}>1$ and $n_{2}>1$ are orders of H-matrices. This is analogous to the simpler result that, if $p^{h}+1 \equiv 0$ $\bmod 4$ an H-matrix of order $p^{h}+1$ exists but, if $p^{h}+1 \equiv 2 \bmod 4$, we can only be sure of the existence of an H-matrix of order $n\left(p^{h}+1\right)$ where $n>1$ is the order of an H-matrix.

We shall denote the direct product of two matrices A and B by $A \cdot B$ and the unit matrix of order n by E_{n}.

Theorems on the existence of H-matrices. If a symmetric H-matrix of order $m>1$ exists, there exists an H-matrix H of order m with the form

$$
H=\left(\begin{array}{cc}
1 & e \\
e^{\prime} & D
\end{array}\right)
$$

Received by the editors December 6, 1946.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

