NOTE ON HADAMARD'S DETERMINANT THEOREM

JOHN WILLIAMSON

Introduction. We shall call a square matrix A of order n an Hadamard matrix or for brevity an H-matrix, if each element of A has the value ± 1 and if the determinant of A has the maximum possible value $n^{n/2}$. It is known that such a matrix A is an H-matrix $[1]^1$ if, and only if, $AA' = nE_n$ where A' is the transpose of A and E_n is the unit matrix of order n. It is also known that, if an H-matrix of order n > 1 exists, n must have the value 2 or be divisible by 4. The existence of an H-matrix of order n has been proved [2, 3] only for the following values of n > 1: (a) n = 2, (b) $n = p^h + 1 \equiv 0 \mod 4$, p a prime, (c) n $= m(p^h + 1)$ where $m \ge 2$ is the order of an H-matrix and p is a prime, (d) n = q(q-1) where q is a product of factors of types (a) and (b), (e) n = 172 and for n a product of any number of factors of types (a), (b), (c), (d) and (e).

In this note we shall show that an *H*-matrix of order *n* also exists when (f) n = q(q+3) where *q* and q+4 are both products of factors of types (a) and (b), (g) $n = n_1 n_2 (p^h + 1) p^h$, where $n_1 > 1$ and $n_2 > 1$ are orders of *H*-matrices and *p* is an odd prime, and (h) $n = n_1 n_2 m(m+3)$ where $n_1 > 1$ and $n_2 > 1$ are orders of *H*-matrices and *m* and m+4 are both of the form p^h+1 , *p* an odd prime.

It is interesting to note the presence of the factors n_1 and n_2 in the types (g) and (h) and their absence in the types (d) and (f). Thus, if p is a prime and $p^h+1\equiv 0 \mod 4$, an *H*-matrix of order $p^h(p^h+1)$ exists but, if $p^h+1\equiv 2 \mod 4$, we can only be sure of the existence of an *H*-matrix of order $n_1n_2p^h(p^h+1)$ where $n_1>1$ and $n_2>1$ are orders of *H*-matrices. This is analogous to the simpler result that, if $p^h+1\equiv 0 \mod 4$, we can only be sure of the existence of 4 an *H*-matrix of order p^h+1 exists but, if $p^h+1\equiv 2 \mod 4$, we can only be sure of the existence of an *H*-matrix of order p^h+1 exists but, if $p^h+1\equiv 2 \mod 4$, we can only be sure of the existence of an *H*-matrix of order $n(p^h+1)$ where n>1 is the order of an *H*-matrix.

We shall denote the direct product of two matrices A and B by $A \cdot B$ and the unit matrix of order n by E_n .

Theorems on the existence of *H*-matrices. If a symmetric *H*-matrix of order m > 1 exists, there exists an *H*-matrix *H* of order *m* with the form

$$H = \begin{pmatrix} 1 & e \\ e' & D \end{pmatrix},$$

Received by the editors December 6, 1946.

¹ Numbers in brackets refer to the references cited at the end of the paper.