A SUM CONNECTED WITH THE PARTITION FUNCTION

ALBERT LEON WHITEMAN

1. Introduction. In the formula for the number $p(n)$ of unrestricted partitions of an integer n there appears the sum [1] ${ }^{1}$

$$
\begin{equation*}
A_{k}(n)=\sum_{h \bmod k}^{\prime} \omega_{h, k} \exp (-2 \pi i h n / k) \tag{1}
\end{equation*}
$$

where the dash ' beside the summation symbol indicates here and in the sequel that the letter of summation runs only through a reduced residue system with respect to the modulus. The symbol $\omega_{h, k}$ denotes certain $24 k$ th roots of unity given by

$$
\omega_{h, k}=\exp (\pi i s(h, k)),
$$

where $s(h, k)$ is a Dedekind sum [2] defined by

$$
s(h, k)=\sum_{\mu=1}^{k}\left(\left(\frac{\mu}{k}\right)\right)\left(\left(\frac{\mu h}{k}\right)\right) .
$$

The symbol ((x)), in turn, is defined as follows:

$$
((x))=\left\{\begin{array}{lr}
x-[x]-1 / 2 & \text { for } x \text { not an integer } \\
0 & \text { for } x \text { an integer }
\end{array}\right.
$$

where $[x]$ denotes, as usual, the greatest integer not exceeding x. D. H. Lehmer [3] has investigated these sums on the basis of a different expression for the roots of unity involved. In the first place he factored the $A_{k}(n)$ according to the prime powers contained in k. Secondly, by reducing them to sums studied by H. D. Kloosterman [4] and H. Salié [5], he evaluated the $A_{k}(n)$ explicitly in the case in which k is a prime or a power of a prime. Both results together provide a method for calculating the $A_{k}(n)$. Alternate proofs of Lehmer's factorization theorems have been given in [2]. In the present note a new approach to the second of Lehmer's results is presented. The method given here is simpler than Lehmer's method, especially in the treatment of the case $k=2^{\lambda}$.
2. Some lemmas. The proofs are based in part on three lemmas, which occur as Theorems 17, 18, 19 in [2].

Lemma 1. Let $\theta=\theta(k)$ denote 1 for $3 \nmid k$ and 3 for $3 \mid k$ so that θk is

Presented to the Society, September 5, 1941; received by the editors June 20, 1946.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

