CONCERNING AUTOMORPHISMS OF NON-ASSOCIATIVE ALGEBRAS

R. D. SCHAFER

In their studies of non-associative algebras A. A. Albert and N. Jacobson have made much use of the relationships which exist between an arbitrary non-associative algebra $\mathfrak A$ and its associative transformation algebra $T(\mathfrak A)$. In this paper we are interested in the automorphism group $\mathfrak B$ of $\mathfrak A$, and we sharpen the results of Jacobson $[3, \S 4]^1$ and Albert $[2, \S 9]$ in the sense that we prove $\mathfrak B$ isomorphic to a well-defined subgroup of the automorphism group of each of three associative algebras $(\S 2, 3)$.

Incidental to our proofs is the reconstruction (in the sense of equivalence) of an arbitrary non-associative algebra $\mathfrak A$ with unity element 1 from $T(\mathfrak A)$ and from either of the enveloping algebras $E(R(\mathfrak A))$, $E(L(\mathfrak A))$ of respectively the right or left multiplications of $\mathfrak A$. This paper has been expanded in accordance with suggestions of the referee to include a more detailed study of the right ideals used in this reconstruction process (§5).

1. **Preliminaries.** Our notations are chiefly those of Albert as given in [1]. We regard a non-associative algebra $\mathfrak A$ of order n over a field $\mathfrak F$ as consisting of a linear space $\mathfrak L$ of order n over $\mathfrak F$, a linear space $R(\mathfrak A)$ of linear transformations $R_{\mathfrak w}$ on $\mathfrak L$ of order $m \leq n$ over $\mathfrak F$, and a linear mapping of $\mathfrak L$ on $R(\mathfrak A)$,

$$(1) x \to R_x.$$

The elements R_x of $R(\mathfrak{A})$ are called *right multiplications*, and $R(\mathfrak{A})$ the *right multiplication space* of \mathfrak{A} . Multiplication in \mathfrak{A} is defined by

$$(2) a \cdot x = aR_x.$$

The linearity of the right multiplications and of (1) insures distributivity in $\mathfrak A$ as well as the usual laws of scalar multiplication. We shall use the fact that, in case $\mathfrak A$ contains no absolute right divisor of zero (an element x such that $a \cdot x = 0$ for all a in $\mathfrak A$), the mapping (1) is nonsingular and the order of $R(\mathfrak A)$ over $\mathfrak F$ is n.

The linear transformations L_x defined by

$$a \to x \cdot a = aL_x$$

Presented to the Society, August 23, 1946; received by the editors August 2, 1946, and, in revised form, November 13, 1946.

¹ Numbers in brackets refer to the references cited at the end of the paper.