CONCERNING AUTOMORPHISMS OF NON-ASSOCIATIVE ALGEBRAS

R. D. SCHAFER

In their studies of non-associative algebras A. A. Albert and N. Jacobson have made much use of the relationships which exist between an arbitrary non-associative algebra \mathfrak{N} and its associative transformation algebra $T(\mathfrak{H})$. In this paper we are interested in the automorphism group (\mathbb{F}) of \mathfrak{A}, and we sharpen the results of Jacobson $[3, \S 4]^{1}$ and Albert $[2, \S 9]$ in the sense that we prove © isomorphic to a well-defined subgroup of the automorphism group of each of three associative algebras ($\S \S 2,3$).

Incidental to our proofs is the reconstruction (in the sense of equivalence) of an arbitrary non-associative algebra \mathfrak{N} with unity element 1 from $T(\mathfrak{H})$ and from either of the enveloping algebras $E(R(\mathfrak{H}))$, $E(L(\mathfrak{C}))$ of respectively the right or left multiplications of \mathfrak{A}. This paper has been expanded in accordance with suggestions of the referee to include a more detailed study of the right ideals used in this reconstruction process (§5).

1. Preliminaries. Our notations are chiefly those of Albert as given in [1]. We regard a non-associative algebra \mathfrak{N} of order n over a field \mathfrak{F} as consisting of a linear space \mathfrak{R} of order n over \mathfrak{F}, a linear space $R(\mathfrak{H})$ of linear transformations R_{x} on \mathbb{R} of order $m \leqq n$ over \mathfrak{F}, and a linear mapping of \mathbb{R} on $R(\mathfrak{H})$,

$$
\begin{equation*}
x \rightarrow R_{x} . \tag{1}
\end{equation*}
$$

The elements R_{x} of $R(\mathfrak{H})$ are called right multiplications, and $R(\mathfrak{H})$ the right multiplication space of \mathfrak{N}. Multiplication in \mathfrak{H} is defined by

$$
\begin{equation*}
a \cdot x=a R_{x} \tag{2}
\end{equation*}
$$

The linearity of the right multiplications and of (1) insures distributivity in \mathfrak{A} as well as the usual laws of scalar multiplication. We shall use the fact that, in case \mathfrak{N} contains no absolute right divisor of zero (an element x such that $a \cdot x=0$ for all a in \mathfrak{H}), the mapping (1) is nonsingular and the order of $R(\mathfrak{H})$ over \mathfrak{F} is n.

The linear transformations L_{x} defined by

$$
\begin{equation*}
a \rightarrow x \cdot a=a L_{x} \tag{3}
\end{equation*}
$$

[^0]
[^0]: Presented to the Society, August 23, 1946; received by the editors August 2, 1946, and, in revised form, November 13, 1946.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

