SOME ASYMPTOTIC FORMULAS FOR MULTIPLICATIVE FUNCTIONS

P. ERDÖS

The present paper contains several asymptotic formulas for the sum of multiplicative functions. A function $f(n)$ is called multiplicative if $f(a \cdot b)=f(a) \cdot f(b)$ for $(a, b)=1$. We assume $f(n)>0$. In this paper $f(n), f_{1}(n)$ will always denote multiplicative functions. First we prove the following theorem.

Theorem $1 .{ }^{1}$ Assume that the two series

$$
\begin{equation*}
-\sum_{p, \alpha} \frac{f\left(p^{\alpha}\right)-1}{p^{\alpha}}, \quad \sum_{p, \alpha} \frac{\left(f\left(p^{\alpha}\right)-1\right)^{2}}{p^{\alpha}} \tag{1}
\end{equation*}
$$

converge; then $f(n)$ has a mean value, that is,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum f(m)
$$

exists and is not equal to zero.
This result was conjectured in a slightly more special form at the end of my paper Some remarks on additive and multiplicative functions. ${ }^{2}$

Remark. The convergence of (1) is the necessary and sufficient condition for the existence of the distribution function of $f(n) .^{3}$

For the sake of simplicity we assume $f\left(p^{\alpha}\right)=f(p)$. Then we prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m \leqq n} f(m)=\prod_{p}\left(1+\frac{f(p)-1}{p}\right) \tag{2}
\end{equation*}
$$

It easily follows from (1) that the product on the right side of (2) converges and thus the value of the limit is not 0 .

We easily obtain from (1) that for every $\epsilon>0$

$$
\sum_{|f(p)-1|>e} \frac{1}{p}<\infty
$$

[^0]
[^0]: Received by the editors May 27, 1946, and, in revised form, December 11, 1946.
 ${ }^{1}$ This result generalizes a result of Wintner, Amer. J. Math. vol. 67 (1945) pp. 481-485.
 ${ }^{2}$ Bull. Amer. Math. Soc. vol. 52 (1946) pp. 527-537.
 ${ }^{3}$ P. Erdös and A. Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721. See also footnote 2.

