A NOTE ON THE MINIMUM MODULUS OF A CLASS OF INTEGRAL FUNCTIONS

S. M. SHAH

A well known theorem due to Littlewood, Wiman, and Valiron¹ states that for any integral function of order less than one-half,

 $\log m(r) > (a \text{ positive constant}) \log M(r),$

on a sequence of circles of indefinitely increasing radius. I consider in this note a class of integral functions which have this property and prove the following theorem.

THEOREM 1. Hypothesis:

(1) (R_n) is any sequence of positive numbers such that $R_1 > 1$, $R_n/R_{n-1} \ge \lambda > 1$.

(2) (p_n) is any sequence of positive integers.

(3) $a_{11}, a_{12}, \dots, a_{1p_1}, a_{21}, \dots, a_{2p_2}, \dots$ are a set of points such that $0 < |a_{11}| \le |a_{12}| \le \dots$ and such that a finite number $a_{n1}, \dots, a_n p_n$ lie inside the ring $(R_n - R_n^\alpha < |z| < R_n)$ where $0 < \alpha < 1$.

(4) μ_n is a sequence of positive integers such that $\sum_{1}^{\infty} p_n / \beta^{\mu_n}$ is convergent, β being any constant greater than one.

(5) The exponent of convergence of the points

$$a_{nr} \exp(2\pi i \nu/\mu_n),$$

where $r = 1, 2, \dots, p_n; \nu = 0, 1, 2, \dots, \mu_n - 1; n = 1, 2, 3, \dots, \text{ is } \rho$ $(0 \le \rho < \infty).$

(6)² Lower bound $\{\mu_n\} \geq 1 + \rho$.

Conclusion:

(7) The canonical product

(8)
$$f(z) = \prod_{n=1}^{\infty} \prod_{s=1}^{p_n} \left\{ 1 - \frac{z^{\mu_n}}{a_{ns}^{\mu_n}} \right\}$$

formed with these points as zeros is of order ρ ; and the values of r = |z| for which the inequality

$$m(r, f) > CM(r, f),$$

Received by the editors February 4, 1946, and, in revised form, November 29, 1946.

¹G. Valiron, Lectures on the general theory of integral functions, pp. 128–130.

² It is possible to choose R_n , p_n , and so on, satisfying the conditions (1) to (6). Example: $R_n = 2^{2n}$; $p_n = n^{2}2^n$; $\mu_n = 2^n$. Here $\rho = 1$.