A NOTE ON THE MINIMUM MODULUS OF A CLASS OF INTEGRAL FUNCTIONS

S. M. SHAH

A well known theorem due to Littlewood, Wiman, and Valiron ${ }^{1}$ states that for any integral function of order less than one-half,

$$
\log m(r)>(\text { a positive constant) } \log M(r),
$$

on a sequence of circles of indefinitely increasing radius. I consider in this note a class of integral functions which have this property and prove the following theorem.

Theorem 1. Hypothesis:
(1) $\left(R_{n}\right)$ is any sequence of positive numbers such that $R_{1}>1$, $R_{n} / R_{n-1} \geqq \lambda>1$.
(2) $\left(p_{n}\right)$ is any sequence of positive integers.
(3) $a_{11}, a_{12}, \cdots, a_{1 p_{1}}, a_{21}, \cdots, a_{2 p_{2}}, \cdots$ are a set of points such that $0<\left|a_{11}\right| \leqq\left|a_{12}\right| \leqq \cdots$ and such that a finite number $a_{n 1}, \cdots, a_{n} p_{n}$ lie inside the ring $\left(R_{n}-R_{n}^{\alpha}<|z|<R_{n}\right)$ where $0<\alpha<1$.
(4) μ_{n} is a sequence of positive integers such that $\sum_{1}^{\infty} p_{n} / \beta^{\mu_{n}}$ is convergent, β being any constant greater than one.
(5) The exponent of convergence of the points

$$
a_{n r} \exp \left(2 \pi i \nu / \mu_{n}\right),
$$

where $r=1,2, \cdots, p_{n} ; \nu=0,1,2, \cdots, \mu_{n}-1 ; n=1,2,3, \cdots$, is ρ $(0 \leqq \rho<\infty)$.
(6) ${ }^{2}$ Lower bound $\left\{\mu_{n}\right\} \geqq 1+\rho$.

Conclusion:
(7) The canonical product

$$
\begin{equation*}
f(z)=\prod_{n=1}^{\infty} \prod_{s=1}^{p_{n}}\left\{1-\frac{z^{\mu_{n}}}{a_{n s}^{\mu_{n}}}\right\} \tag{8}
\end{equation*}
$$

formed with these points as zeros is of order ρ; and the values of $r=|z|$ for which the inequality

$$
m(r, f)>C M(r, f)
$$

Received by the editors February 4, 1946, and, in revised form, November 29, 1946.
${ }^{1}$ G. Valiron, Lectures on the general theory of integral functions, pp. 128-130.
${ }^{2}$ It is possible to choose R_{n}, p_{n}, and so on, satisfying the conditions (1) to (6). Example: $R_{n}=2^{2 n} ; p_{n}=n^{22^{n}} ; \mu_{n}=2^{n}$. Here $\rho=1$.

