EXTENSIONS OF DIFFERENTIAL FIELDS. III

E. R. KOLCHIN

The purpose of the present note is to show how the point of view of a preceding paper¹ can be used in developing the concepts of resolvent, dimension, and order introduced by J. F. Ritt in his theory of algebraic differential equations.² The present development, in addition to being simpler in some instances, has the advantage of being valid for abstract differential fields as opposed to fields of meromorphic functions of a complex variable, as used by Ritt. I shall also take the opportunity to correct mistakes in a related paper.³ The notation and definitions used will be as in Extensions I and II.

1. Resolvents, dimension, and order. Let \mathcal{J} be a differential field (ordinary or partial) of characteristic 0, and let y_1, \dots, y_n be unknowns. If Π is a prime differential ideal in $\mathcal{J}\{y_1, \dots, y_n\}$ other than $\mathcal{J}\{y_1, \dots, y_n\}$ itself then Π has a generic solution η_1, \dots, η_n .

If the degree of differential transcendency of $\mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle$ over \mathcal{J} is q then $0 \leq q < n$, and precisely q of the elements η_1, \cdots, η_n are differentially algebraically independent over \mathcal{J} . Suppose, say, that $\eta_1 \cdots, \eta_q$ are independent in this way, that is, that Π does not contain a nonzero differential polynomial in y_1, \cdots, y_q , but does in y_1, \cdots, y_q , y_j for each j > q. In Ritt's terminology $y_1 \cdots, y_q$ is a complete set of arbitrary unknowns for Π . It is natural to call q the *dimension* of Π (in symbols, dim Π).

Suppose henceforth that \mathcal{J} is ordinary. It is easy to see that the degree of transcendency of $\mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle$ over $\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ (both these differential fields being considered as fields) is finite. We denote the degree of transcendency of any field \mathcal{K} over a subfield \mathcal{G} by $\partial^0 \mathcal{K}/\mathcal{G}$. It will be seen that it is natural to call the integer $\partial^0 \mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle/\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ the *order* of Π with respect to y_1, \cdots, y_q (when the set of arbitrary unknowns is understood, for example when q=0, we use the notation: ord Π).

Presented to the Society, November 2, 1946; received by the editors October 10, 1946.

¹ Kolchin, *Extensions of differential fields*, I, Ann. of Math. vol. 43 (1942) pp. 724–729. We shall refer to this paper as *Extensions* I.

² The subject matter treated here, together with some of the material from *Extensions* I, is roughly parallel to the contents of §§24-31, 75 of Ritt, *Differential equations from the algebraic standpoint*, Amer. Math. Soc. Colloquium Publications, vol. 14, New York, 1932.

⁸ Kolchin, *Extensions of differential fields*, II, Ann. of Math. vol. 45 (1944) pp. 358-361. We shall refer to this paper as *Extensions* II.