SEQUENCES OF IDEAL SOLUTIONS IN THE TARRY-ESCOTT PROBLEM

H. L. DORWART

1. Introduction. In the Tarry-Escott problem (sometimes called the problem of multi-degree equalities, or of equal sums of like powers), one seeks integral solutions of the k equations

$$
\begin{equation*}
\sum_{i=1}^{s} x_{i}^{l}=\sum_{i=1}^{s} y_{i}^{l}, \quad l=1,2, \cdots, k \tag{1}
\end{equation*}
$$

The usual notation is to represent a solution of (1) by

$$
\begin{equation*}
a_{1}, \cdots, a_{s} \stackrel{k}{=} b_{1}, \cdots, b_{s} \tag{2}
\end{equation*}
$$

Such a solution is called trivial if the a 's form a permutation of the b 's, and will be called semi-trivial if any $a_{i}=a_{j}$ or $b_{i}=b_{j}$. A solution is said to be in reduced form when $\sum a_{i}=0,\left(a_{i}, b_{i}\right)=1$, and solutions having the same reduced form are called equivalent solutions.

It is easily shown that for nontrivial solutions, $s>k$. The case $s=k+1$, called the ideal or optimum case [1,2], is of particular interest in many applications [5]. For a given $k, N(k)$ is defined as the least value of s for which (1) has nontrivial solutions. It is known in general [7] that $N(k) \leqq k(k+1) / 2$, but numerical examples [6] give $N(k)=k+1$ for $k=1,2, \cdots, 9$.

In order to decrease the number of the equations (1), many writers have imposed the conditions

$$
\begin{equation*}
x_{i}=-y_{i}, \quad i=1,2, \cdots, s, \text { for } s \text { odd } \tag{3}
\end{equation*}
$$

or
(4) $\quad x_{s+1-i}=-x_{i}, \quad y_{s+1-i}=-y_{i}, \quad i=1,2, \cdots, s / 2$, for s even.

Solutions of (1) subject to (3) or (4) will be called symmetric solutions. It is evident that the conditions for symmetry are sufficient to assure that symmetric solutions are reduced.

By use of the binomial theorem, one finds that (2) implies

$$
\begin{equation*}
M a_{1}+K, \cdots, M a_{s}+K \stackrel{k}{=} M b_{1}+K, \cdots, M b_{s}+K \tag{5}
\end{equation*}
$$

and
Received by the editors January 17, 1946, and, in revised form, April 20, 1946.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

