A NOTE ON THE MEAN VALUE OF THE POISSON KERNEL

A. S. GALBRAITH AND J. W. GREEN

In some investigations it is necessary to evaluate the mean value of some power of the Poisson kernel,

$$P(r,\theta) \equiv (1-r^2)/(1-2r\cos\theta+r^2),$$

with respect to θ . This note gives a closed expression for this mean value, and an exact statement of the order of growth as r approaches 1.

THEOREM 1. If
$$x = 2r/(1+r^2)$$
, then

(1)
$$\frac{1}{2\pi} \int_{0}^{2\pi} P^{n+1}(r,\theta) d\theta = \left(\frac{1-r^2}{1+r^2}\right)^{n+1} \cdot \frac{1}{\Gamma(n+1)} \\ \cdot \frac{d^n}{dx^n} \left(\frac{x^n}{(1-x^2)^{1/2}}\right), \qquad n > -1.$$

If n is not an integer the derivative is to be computed by the formula of Riemann and Liouville¹

(2)
$$\frac{d^n}{dx^n}(f(x)) = \frac{d^m}{dx^m} \frac{1}{\Gamma(\rho)} \int_0^x (x-t)^{\rho-1} f(t) dt,$$

where m is the smallest integer not less than n and $\rho = m - n$.

The proof consists merely of the comparison of two power series. Clearly

$$P^{n+1}(r,\theta) = \left(\frac{1-r^2}{1+r^2}\right)^{n+1} \left(1-\frac{2r}{1+r^2}\cos\theta\right)^{-(n+1)},$$

and the second parenthesis, with $x = 2r/(1+r^2)$, is $1+(n+1)x \cos \theta + (n+1)(n+2)/2!x^2 \cos^2 \theta + \cdots$ by the binomial theorem. Since

$$\int_{0}^{2\pi} \cos^{p} \theta d\theta = 0 \qquad (\text{if } p \text{ is an odd integer})$$
$$= \frac{4(p-1)(p-3)\cdots 3\cdot 1}{\pi} \cdot \frac{\pi}{\pi} \text{ (if } p \text{ is even})$$

$$= \frac{p(p-2)\cdots 4\cdot 2}{p(p-2)\cdots 4\cdot 2} \cdot \frac{p(p-2)\cdots p(p-2)}{2}$$
 (if p is evolved)

Received by the editors October 28, 1946.

¹ See, for example, Courant, *Differential and integral calculus*, rev. ed., vol. 2, pp. 339–340.