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In some investigations it is necessary to evaluate the mean value 
of some power of the Poisson kernel, 

P(r, 0) s (1 - r2)/(l - 2r cos 6 + r2), 

with respect to 0. This note gives a closed expression for this mean 
value, and an exact statement of the order of growth as r approaches 1. 

THEOREM 1. If x = 2r/(l+r2), then 
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If n is not an integer the derivative is to be computed by the formula of 
Riemann and Liouville1 
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where m is the smallest integer not less than n and p~m — n. 

The proof consists merely of the comparison of two power series. 
Clearly 
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and the second parenthesis, with x = 2 r / ( l + r i ) , is l + (w + l)x cos 0 
+ (n + l)(n+2)/2lx2 cos2 8+ • • • by the binomial theorem. Since 
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