1947]

within any time Δt be respectively $k_{i+1}\Delta t + o(\Delta t)$ and $g_i\Delta t + o(\Delta t)$. Let the probability of any other transition during Δt be $o(\Delta t)$. Let k_i 's and g_i 's be constant. Let $P_i(t)$ be the probability of the existence of the state *i* at the time *t* if the state 0 existed at the time t=0. The paper gives $\int_0^{\infty} t^m P_i(t) dt$ or $\int_0^{\infty} t^m P_i'(t) dt$ as algebraic expressions of the k_i 's and g_i 's. The result is obtained by using the complete homogeneous symmetric functions of the poles of the Laplace transform of $P_i(t)$ or $P_i'(t)$. (Received November 20, 1946.)

91. Gerhard Tintner: The statistical estimation of the dimensionality of a given set of observations.

There is a set of N observations of p variables $X_{it} = M_{it} + y_{it}$, where M_{it} is the systematic part and y_{it} the random element $(i=1, 2, \dots, p; t=1, 2, \dots, N)$. The y_{it} are normally and independently distributed with means zero. There are in the population R linear independent relationships of the form: $k_{s0} + \sum_i k_{si} M_{it} = 0$ $(s=1, 2 \dots R)$. A method based upon results of R. A. Fisher (Annals of Eugenics, 1938) and P. L. Hsu (ibid. 1941) assumes that we have a large sample estimate of the covariance matrix of the y_{it} : $||V_{ij}||$. The determinantal equation is $|a_{ij} - \lambda V_{ij}| = 0$, where the a_{ij} are the sample covariances of the X_{it} . λ_1 is the smallest root of the equation, λ_2 the next smallest, and so on. $\Lambda_r = (N-1)\sum_i \lambda_i$. These sums of squares are distributed like χ^2 with r(N-p-1+r) degrees of freedom and may be used to estimate the number R of linear relations between the M_{ii} . By inserting the R smallest roots into the determinantal equation matrices are found for the computation of the coefficients k_{si} (G. Tintner, Ann. of Math. Statist., 1945). (Received October 15, 1946.)

92. Jacob Wolfowitz: On the efficiency of unbiased sequential estimates.

Let $f(x, \theta)$ be the distribution function (density function or probability function) of a chance variable X, which depends upon the parameter $\theta = \theta_1, \dots, \theta_l$. Let *n* successive independent observations be made on X, where *n* is itself a chance variable, and the decision to terminate the drawing of observations depends upon the observations already obtained. Let $\theta_1^*(x_1, \dots, x_n), \dots, \theta_l^*(x_1, \dots, x_n)$ be joint unbiased estimates of $\theta_1, \dots, \theta_l$. Let $\|\lambda_{ij}\|$ be the nonsingular matrix of their covariances, and $\|\lambda^{ij}\|$ its inverse. Under certain regularity conditions it is proved that the concentration ellipsoid $\sum \lambda^{ij}(k_i - \theta_i)(k_j - \theta_j) = l + 2$ always contains within itself the ellipsoid $\sum \mu_{ij}(k_i - \theta_i)(k_j - \theta_j) = l + 2$, where $\mu_{ij} = EnE((\partial \log f/\partial \theta_i)(\partial \log f/\partial \theta_j))$. (Received October 21, 1946.)

TOPOLOGY

93. R. F. Arens: Pseudo-normed algebras.

A pseudo-norm defined on a linear algebra A over, for example, the reals, is a realvalued function having the formal properties of a norm in a normed ring except that the pseudo-norm of some nonzero elements may vanish. Consequently, a pseudonormed algebra is required by definition to have a complete system of pseudo-norms. The continuity of inversion is considered; and the singular elements related to the closed divisorless proper ideals. The space of the latter, and conditions for its compactness, are considered. As a by-product a characterization of rings of all continuous complex-valued functions on a topological space is obtained. Special attention is given to the question of completeness of quotient rings. (Received November 19, 1946.)