SET PROPERTIES DETERMINED BY CONDITIONS ON LINEAR SECTIONS

F. A. VALENTINE

Let $\mathcal{R}_n(n \geq 2)$ be an *n*-dimensional Euclidean space, and let S be any set of points in \mathcal{R}_n . There exist a number of instances in which the following question has an interesting answer. Suppose a property A holds on each (n-1)-dimensional linear section S_{n-1}^i of S. What additional property B assumed to hold on each section S_{n-1}^i will insure that property A holds on S?

The following terminology is used. A continuum is a compact connected set which may include the degenerate case of a single point. Also compactness includes closure. A generalized continuum is a set which is connected and closed. An (n-r)-dimensional linear section of a set S with an (n-r)-dimensional Euclidean hyperplane L_{n-r} is defined to be the set $S \cdot L_{n-r}$. A subscript will always designate the dimensionality of the set.

1. Theorems on closed, open and bounded sets. The following theorem illustrates the theory, and plays an important role in a succeeding theorem. It is a case in which condition B is sufficient but not necessary. We shall always assume $n \ge 2$.

THEOREM 1. Let S be any set in \Re_n $(n \ge 2)$. If each (n-1)-dimensional linear section of S is connected and closed, then S is closed.

PROOF. Suppose S is not closed. Then there exists a point $p \notin S$ which is a limit point of S. Let L_{n-1} be an (n-1)-dimensional hyperplane containing p, such that $S \cdot L_{n-1} \neq 0$. Since, by hypothesis, $S_{n-1} \equiv S \cdot L_{n-1}$ is closed, there exists an (n-1)-dimensional closed cube $C_{n-1} \subset L_{n-1}$, which contains p in its interior, and for which $C_{n-1} \cdot S_{n-1} = 0$. Let P_n be an n-dimensional hyperprism passing through C_{n-1} , and perpendicular to L_{n-1} . Since p is a limit point of S which is not in S, and since S_{n-1} is closed, there exists a sequence of points $p^i \in S \cdot P_n$, such that $p^i \notin L_{n-1}$, and such that $p^i \to p$ as $i \to \infty$. Let L_{n-2} be any (n-2)-dimensional hyperplane contained in L_{n-1} such that $S \cdot L_{n-2} \neq 0$, and such that $L_{n-2} \cdot C_{n-1} = 0$. Then there exists a sequence of hyperplanes L_{n-1}^i determined by L_{n-2} and p^i . By hypothesis each set $S \cdot L_{n-1}^i$ is connected. Hence since $p^i \in S \cdot L_{n-1}^i \cdot P_n$, and since any point $q \in S \cdot L_{n-2} \cdot L_{n-1}^i$ is not in P_n , the connectedness of $S \cdot L_{n-1}^i$ im-

Presented to the Society, November 24, 1945; received by the editors November 16, 1945, and, in revised form, May 10, 1946.