SPACES CONGRUENT WITH BOUNDED SUBSETS OF THE LINE

GAIL S. YOUNG, JR.
This note is devoted to a characterization of bounded subsets of the line from the viewpoint of metric geometry. Such spaces have been characterized by Menger and others, ${ }^{1}$ usually from the consideration of conditions on imbeddability of finite subsets. The theorem given below differs from these in making use of a minimality property of the linear metric as the condition for congruence.

Theorem. Let S be a metric space wuth distance function $d(x y)$ and diameter t, possibly infinite. A necessary and sufficient condition that S be congruent with a bounded subset of the real line is that if $d^{\prime}(x y)$ is another metric for S which is topologically equivalent ${ }^{2}$ to $d(x y)$ and in which S has diameter t, then there are two points a and b of S such that $d^{\prime}(a b)>d(a b)$.

Proof. The condition is necessary. For suppose that S is a bounded subset of the real line with diameter t, and that there exists a metric $d^{\prime}(x y)$ for S such that (1) for some two points a and $b, d^{\prime}(a b)<d(a b)$, $d(x y)$ denoting the Euclidean metric for S; (2) for each two points x and $y, d^{\prime}(x y) \leqq d(x y)$; and (3) there exist sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, of points such that $d^{\prime}\left(x_{n} y_{n}\right)$ approaches t as n increases. From (2), $\lim d\left(x_{n} y_{n}\right)$ is also t. There is no loss of generality in assuming that

$$
\begin{aligned}
d\left(x_{n} y_{n}\right) & =d\left(x_{n} a\right)+d(a b)+d\left(b y_{n}\right) \\
& =d\left(x_{n} a\right)+d^{\prime}(a b)+d\left(b y_{n}\right)+\left[d(a b)-d^{\prime}(a b)\right] \\
& \geqq d^{\prime}\left(x_{n} a\right)+d^{\prime}(a b)+d^{\prime}\left(b y_{n}\right)+\left[d(a b)-d^{\prime}(a b)\right] \\
& \geqq d^{\prime}\left(x_{n} y_{n}\right)+\left[d(a b)-d^{\prime}(a b)\right] .
\end{aligned}
$$

By taking the limit of both sides of this last inequality, we get an immediate contradiction of (1).

The condition is sufficient. There exist sequences $\left\{x_{n}{ }^{\prime}\right\},\left\{y_{n}{ }^{\prime}\right\}$, of points of S such that $\lim d\left(x_{n}{ }^{\prime} y_{n}^{\prime}\right)=t$. Let $\left\{x_{n}\right\}$ be any subsequence of $\left\{x_{n}^{\prime}\right\}$. For each two points x and y let

[^0]
[^0]: Received by the editors May 6, 1946.
 ${ }^{1}$ For definitions and bibliography, see L. M. Blumenthal, Distance geometries, University of Missouri Studies, 1938. This theorem had its beginning in discussions of some problems in measure with Dr. Dorothy Maharam.
 ${ }^{2}$ That is, in order that $d\left(x_{n} x\right)$ approach zero, it is necessary and sufficient that $d^{\prime}\left(x_{n} x\right)$ approach zero.

