EQUIVALENCE IN A CLASS OF DIVISION ALGEBRAS OF ORDER 16

R. D. SCHAFER

Let \mathfrak{C} be a Cayley-Dickson division algebra over an arbitrary field \mathfrak{F} with principal equation

(1)
$$x^2 - t(x)x + n(x) = 0$$

and involution

$$(2) S: x \leftrightarrow xS = t(x) - x$$

We are concerned with division algebras \mathfrak{A} of order 16 over \mathfrak{F} defined in the following way: let \mathfrak{C}_o be a division algebra (of order 8) over \mathfrak{F} with the same elements as \mathfrak{C} but with multiplication denoted by *xoy*; further let $\mathfrak{A} = \mathfrak{C} + v\mathfrak{C}$, multiplication¹ in \mathfrak{A} being defined by

(3)
$$cz = (a + vb)(x + vy) = (ax + yobS) + v(aS \cdot y + xb)$$

for a, b, x y, in \mathbb{C} .

In the original form of this paper, the author considered the problem of equivalence in the class of algebras $\mathfrak{A} = \mathfrak{C} + v \mathfrak{C}$ with multiplication defined by

(4)
$$cz = (a + vb)(x + vy) = (ax + g \cdot ybS) + v(aS \cdot y + xb)$$

for a, b, x, y in \mathbb{C} where g is a fixed element of $\mathbb{C}, g \oplus \mathfrak{F}$. The author had shown in [5] that \mathfrak{A} is a division algebra in case g is chosen with n(g) not a square in \mathfrak{F} ; in particular, such a choice of g can be made when \mathfrak{F} is the field R of rational numbers. R. H. Bruck, the referee of the paper in its original form, suggested a study of the wider class of algebras defined by (3). Theorems 1 and 2 are generalizations of the result in [5] and are due² to R. H. Bruck. By their use the class of algebras studied here has been considerably enlarged.³

In §2 we shall determine conditions for the equivalence of two alge-

Presented to the Society, April 27, 1946; received by the editors February 26, 1946, and, in revised form, May 29, 1946.

¹ This modification of the Cayley-Dickson process was originally presented by R. H. Bruck in [2], Theorem 16C, to obtain non-alternative division algebras of orders 4 and 8. Numbers in brackers refer to the references cited at the end of the paper.

² Theorem 2 was communicated to the author by Bruck, complete except for the proof of the equivalence of \mathfrak{G}_* and \mathfrak{G} , a fact which Bruck conjectured.

⁸ See the comment following the corollary to Theorem 4.