NOTE ON NORMAL NUMBERS

ARTHUR H. COPELAND AND PAUL ERDÖS

D. G. Champernowne¹ proved that the infinite decimal

0.123456789101112 · · ·

was normal (in the sense of Borel) with respect to the base 10, a normal number being one whose digits exhibit a complete randomness. More precisely a number is normal provided each of the digits 0, 1, 2, \cdots , 9 occurs with a limiting relative frequency of 1/10 and each of the 10^k sequences of k digits occurs with the frequency 10^{-k}. Champernowne conjectured that if the sequence of all integers were replaced by the sequence of primes then the corresponding decimal

0.12357111317 • • •

would be normal with respect to the base 10. We propose to show not only the truth of his conjecture but to obtain a somewhat more general result, namely:

THEOREM. If a_1, a_2, \cdots is an increasing sequence of integers such that for every $\theta < 1$ the number of a's up to N exceeds N^{θ} provided N is sufficiently large, then the infinite decimal

 $0.a_1a_2a_3\cdots$

is normal with respect to the base β in which these integers are expressed.

On the basis of this theorem the conjecture of Champernowne follows from the fact that the number of primes up to N exceeds $cN/\log N$ for any c<1 provided N is sufficiently large. The corresponding result holds for the sequence of integers which can be represented as the sum of two squares since every prime of the form 4k+1is also of the form x^2+y^2 and the number of these primes up to Nexceeds $c'N/\log N$ for sufficiently large N when c'<1/2.

The above theorem is based on the following concept of Besico-vitch.²

DEFINITION. A number A (in the base β) is said to be (ϵ , k) normal if any combination of k digits appears consecutively among the digits of A with a relative frequency between $\beta^{-k} - \epsilon$ and $\beta^{-k} + \epsilon$.

Presented to the Society, September 17, 1945; received by the editors June 30, 1945, and, in revised form, January 3, 1946.

¹ J. London Math. Soc. vol. 8 (1933) pp. 254-260.

² Math. Zeit. vol. 39 (1935) pp. 146-147.