NOTE ON NORMAL NUMBERS

ARTHUR H. COPELAND AND PAUL ERDÖS
D. G. Champernowne ${ }^{1}$ proved that the infinite decimal

$$
0.123456789101112 \ldots
$$

was normal (in the sense of Borel) with respect to the base 10 , a normal number being one whose digits exhibit a complete randomness. More precisely a number is normal provided each of the digits $0,1,2, \cdots, 9$ occurs with a limiting relative frequency of $1 / 10$ and each of the 10^{k} sequences of k digits occurs with the frequency 10^{-k}. Champernowne conjectured that if the sequence of all integers were replaced by the sequence of primes then the corresponding decimal

$$
0.12357111317 \ldots
$$

would be normal with respect to the base 10 . We propose to show not only the truth of his conjecture but to obtain a somewhat more general result, namely:

Theorem. If a_{1}, a_{2}, \cdots is an increasing sequence of integers such that for every $\theta<1$ the number of a^{\prime} 's up to N exceeds N^{θ} provided N is sufficiently large, then the infinite decimal

$$
0 . a_{1} a_{2} a_{3} \ldots
$$

is normal with respect to the base β in which these integers are expressed.
On the basis of this theorem the conjecture of Champernowne follows from the fact that the number of primes up to N exceeds $c N / \log N$ for any $c<1$ provided N is sufficiently large. The corresponding result holds for the sequence of integers which can be represented as the sum of two squares since every prime of the form $4 k+1$ is also of the form $x^{2}+y^{2}$ and the number of these primes up to N exceeds $c^{\prime} N / \log N$ for sufficiently large N when $c^{\prime}<1 / 2$.

The above theorem is based on the following concept of Besicovitch. ${ }^{2}$

Definition. A number A (in the base β) is said to be (ϵ, k) normal if any combination of k digits appears consecutively among the digits of A with a relative frequency between $\beta^{-k}-\epsilon$ and $\beta^{-k}+\epsilon$.

[^0]
[^0]: Presented to the Society, September 17, 1945; received by the editors June 30, 1945, and, in revised form, January 3, 1946.
 ${ }^{1}$ J. London Math. Soc. vol. 8 (1933) pp. 254-260.
 ${ }^{2}$ Math. Zeit. vol. 39 (1935) pp. 146-147.

