tion of linear functions of ordered dyads $X_{m+1}(\alpha)=\sum x_{j} \alpha_{1} \alpha_{j}(j=1,2, \cdots, m+1)$ with coefficients x_{j} in a suitable domain D (field F) relatively to any given abstract group G of order $m+1$ ($m=1,2, \cdots$) represented as a regular group of configurational sets of dyads on $m+1$ elements. Two dyads $\alpha_{i} \alpha_{j}$ and $\alpha_{k} \alpha_{l}$ are then equivalent if and only if they occur in the same configurational set of dyads. Multiplication is determined by $\alpha_{i} \alpha_{j} \times \alpha_{j} \alpha_{k}=\alpha_{i} \alpha_{k}$ and by the preceding equivalences. Other instances of dyadic representation of linear algebras are given by two examples: 1. $X_{2}(\alpha)$ $=x_{1} \alpha_{1} \alpha_{1}+x_{2} \alpha_{1} \alpha_{2}$ with equivalences $\alpha_{1} \alpha_{1}=\alpha_{2} \alpha_{2}, \alpha_{1} \alpha_{2}=-\alpha_{2} \alpha_{1}$. 2. $X_{4}(\alpha)=\sum x_{j} \alpha_{1} \alpha_{j}$ ($j=1,2,3,4$) with equivalences corresponding to those given by the author (Math. Ann. vol. 69 p. 584). In both examples multiplication is determined by $\alpha_{i} \alpha_{j} \times \alpha_{j} \alpha_{k}$ $=\alpha_{i} \alpha_{k}$ and by the associated equivalences. (Received July 11, 1946.)

278. M. C. Sholander: On the existence of the inverse operation in certain spaces.

In a set S of elements x, y, \cdots which admits a binary operation-here denoted by multiplication-an element a will be called regular if both (i) $a x=a y$ implies $x=y$ and (ii) $x a=y a$ implies $x=y$. An element a will be called proper if for each element b in S there exist unique solutions x and y in S for the equations $a x=b$ and $y a=b$. It is well known that if the multiplication is commutative and associative S can be imbedded in a space S^{\prime} of the same type in such a way that all elements regular in S are proper in S^{\prime}. In this paper it is shown the imbedding process can also be carried out in case the multiplication is one satisfying the alternation law $(a b)(c d)=(a c)(b d)$ and in case the regular elements of S are closed under multiplication. Thus if all elements of S are regular, S^{\prime} is a quasi-group of a type studied, for example, by D. C. Murdoch (Trans. Amer. Math. Soc. vol. 49 (1941) pp. 392-409) and R. H. Bruck (Trans. Amer. Math. Soc. vol. 55 (1944) pp. 19-52). Various conditions which insure the necessary closure property in S are given in the paper. (Received July 26, 1946.)

279. J. M. Thomas: Eliminants.

If $R(a, b)$ denotes the resultant to two polynomials $x(t), y(t)$ whose constant terms are a, b, the polynomial $R(a-x, b-y)$ in the two indeterminates x, y is the eliminant $E(x, y)$ of $x(t), y(t)$. This paper (i) proves $E(x, y)=f^{k}$, where f is an irreducible polynomial and k is a positive integer; (ii) proves $E(x, y)$ is reducible ($1<k$) if and only if $x(t), y(t)$ are also polynomials in a second parameter which is itself a polynomial of degree at least two in t; (iii) expresses in terms of $E(x, y)$ algebraic conditions that a single polynomial $y(t)$ be a polynomial in $x(t)$ of degree k, where $1<k<\operatorname{deg} y$ (these last polynomials have been called by Ritt composite polynomials, Trans. Amer. Math. Soc. vol. 23 (1922) pp. 51-66). (Received July 27, 1946.)

280. J. H. M. Wedderburn: Note on Goldbach's theorem.

It is shown in this note that, if p and q are primes and $r=(p+q) / 2$ is a prime, then $p-q$ is a multiple of 12 unless r has the form $2 p-3$ or, when unity is reckoned as a prime, also $r=2 p-1$. The proof is elementary and depends on reducing modulo 12. Similar statements apply if q is replaced by $-q$. (Received July 30, 1946.)

Analysis

281. R. P. Agnew: Methods of summability which evaluate sequences of zeros and ones summable C_{1}.
