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ALGEBRA AND THEORY OF NUMBERS 

262. P. T. Bateman: On the representations of a number as the sum 
of three squares. 

In determining r8(n), the number of representations of a positive integer n as the 
sum of 5 squares, it is known that the singular series p«(«) constructed by Hardy 
(Trans. Amer. Math. Soc. vol. 21 (1920) pp. 255-284) gives exact results for 3 ̂ 5 ^ 8 . 
For 5 S s ̂  8 Hardy proved this by showing that the function ^«(r) = 1 -\^2^+\p9{n)eviTn

t 

&(T) >0, has exactly the same behavior under the modular subgroup r 8 as the function 
t?3(0|r)*=»£"--.poC,r*rn2)*=sl+2]n-i^(«)e,rt'Tn. For 5 = 3, 4 the double series of partial 
fractions for ^«(r) which Hardy used to establish the modular properties of ¥,(r) is 
no longer absolutely convergent, even though the proof is correct formally. For s=4 
absolute convergence is easily restored by grouping terms, but for 5=3 this is not 
possible. In this paper the case 5=3 is successfully treated by supplementing the 
Hardy method with a limit process of the kind used by Hecke in defining his general
ized Eisenstein series. There are some analytical intricacies in applying the limit proc
ess, but no formal difficulties. A particular result is that for n square free, rs(n) 
« C ^ V ^ - E L C - w A ) ^ 1 , where C=0 if n = 7 (mod 8), C=16 if n^3 (mod 8), 
and C=24 if nml, 2, 5, 6 (mod 8). (Received July 13, 1946.) 

263. Garrett Birkhoff and P. M. Whitman: Representation theory 
for certain non-associative algebras. 

It is known that the ways of embedding a Lie algebra L in a linear associative 
enveloping algebra are all obtained from a "universal" enveloping algebra AU(L) with 
infinite basis, by setting a suitable ideal of L equal to zero. It is shown that a corre
sponding theorem holds for any Jordan algebra / , but that AU(J) has a finite basis if / 
does. Particular examples are worked out for Lie and Jordan algebras. If L or / is 
"solvable," then the finite basis theorem is valid in AU(L) and AU(J). (Received July 
15,1946.) 
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264. A. T. Brauer: Limits f or the characteristic roots of a matrix. 

Let A~(aK\) be a matrix with real or complex elements. Set Sx-i|a«x 

7x-
aK\\ =*T\\ m a x * ^ «{#«}=.£, maxx-1,2 n{T\}=*T\ RK-\at 

axx I ̂ QX' It is proved that each characteristic root wy of A lies in at least one 
of the circles | s—<xxx| £PK and in at least one of the circles |g—axx| ^Q\ . It follows 
that I co, I 2g min (R, T). This generalizes a result of Frobenius for matrices with posi-
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