RECIPROCALS OF J-MATRICES
H. S. WALL
1. Introduction. We consider J-matrices
J=(is), Goa=0 for |p—gl22  jp=0bs
Jet1p = Jppr1 = — ap # 0,
such that
(1.1 I[J(x B)] =2 100 | [ = 2 1(a5) (%5 %511 + &ppe1) 2 0

for all x, for which the sums converge. These are the J-matrices as-
sociated with a positive definite J-fraction [4, 5, 1].! Let X,(z) and
Y,(2) denote the solutions of the system of linear equations

(1°2) — Gp—1%p—1 + (bp + z)xp — Gp¥pt1 = Or P = 11 21 3; 3 Qo =1)
under the initial conditions xo= —1, x;=0 and x,=0, x;=1, respec-
tively. We shall prove that when at least one of the series
(1.3) 21X, 05 v,

p=1 p=1

diverges, then the matrix J+2I has a unique bounded reciprocal for
I(2) >0, and that when both the series (1.3) converge then the matrix
J+2I has infinitely many different bounded reciprocals. This theo-
rem was proved by Hellinger [2] for the case where the coefficients
@, and b, are all real.

2. Reciprocals of an arbitrary J-matrix. The general right recipro-
cal of J+2I is (p,,) where p1,q, ¢=1, 2, 3, - - -, are arbitrary func-
tions of 2z, and [3, p. 116]

P1,4(2)Y 5(2), p=1,23-,¢q
(2.1) Pr(3) = {Pl.q(z)yp(z) + X ()Y 5(2) — X ()Y o(2),

y P=q+1’q+2,q+3’.
We shall say that the determinate case or the indeterminate case holds
for the J-matrix according as at least one of the series (1.3) diverges

or both of these series converge, respectively. In the indeterminate
case, both of the series
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