A THEOREM ON ARBITRARY J-FRACTIONS

H. S. WALL

1. Introduction. We consider a J-fraction

(1.1)
$$\frac{\frac{1}{b_1 + z - \frac{a_1^2}{b_2 + z - \frac{a_2^2}{b_3 + z - \frac{a_2}{b_3 + z - \frac{a_2}{b_3 + z - \frac{a_2}{b_3 + z - \frac{a_3}{b_3 + z - \frac{a_3}{b_3$$

in which the coefficients a_p and b_p are any complex numbers, the a_p being different from zero, and z is a complex parameter. The system of linear equations

(1.2)
$$\begin{aligned} -a_{p-1}x_{p-1} + (b_p + z)x_p - a_p x_{p+1} &= 0, \\ p &= 1, 2, 3, \cdots; a_0 = 1, \end{aligned}$$

can be solved for x_2 , x_3 , x_4 , \cdots uniquely in terms of arbitrarily chosen initial values x_0 and x_1 . We denote by $X_p(z)$ and $Y_p(z)$ the solutions corresponding to $x_0 = -1$, $x_1 = 0$ and $x_0 = 0$, $x_1 = 1$, respectively: $X_0(z) = -1$, $X_1(z) = 0$, $Y_0(z) = 0$, $Y_1(z) = 1$. Then $X_{p+1}(z)/Y_{p+1}(z)$ is the *p*th approximant of the *J*-fraction, and we have the determinant formula

(1.3)
$$X_{p+1}(z)Y_p(z) - X_p(z)Y_{p+1}(z) = 1/a_p, \qquad p = 0, 1, 2, \cdots$$

The following theorem holds.

THEOREM OF INVARIABILITY. If the series

(1.4)
$$\sum_{p=1}^{\infty} |X_p(z)|^2, \qquad \sum_{p=1}^{\infty} |Y_p(z)|^2$$

converge for a single value of the parameter z, then these series converge uniformly over every bounded domain of z.

This theorem was proved by Hellinger and Wall [3].¹ The uniformity of the convergence was not explicitly mentioned, but is contained

Presented to the Society, September 17, 1945; received by the editors December 26, 1945.

¹ Numbers in brackets refer to the Bibliography at the end of the paper.