ALMOST PERIODICITY, EQUI-CONTINUITY AND TOTAL BOUNDEDNESS

W. H. GOTTSCHALK

Let X be a uniform space; that is to say, let X be a space provided with a system of indexed neighborhoods $U_{\alpha}(x)$ ($x \in X$, $\alpha = \text{index}$), subject to the conditions (A. Weil): (1) If $x \in X$ and if α is an index, then $x \in U_{\alpha}(x)$; (2) If α and β are indices, then there exists an index γ such that $x \in X$ implies $U_{\gamma}(x) \subset U_{\alpha}(x) \cap U_{\beta}(x)$; (3) If α is an index, then there exists an index β such that $x, y, z \in X$ with $x, y \in U_{\beta}(z)$ implies $x \in U_{\alpha}(y)$. Let T be a topological group with identity σ and let f be a transformation of $X \times T$ into X. We agree to write $f^{i}(x)$ or $f_{\alpha}(t)$ in place of f(x, t) ($x \in X$, $t \in T$), whenever we wish. Furthermore, let f define a transformation group; that is to say, suppose $f^{\sigma}(x) = x$ and $f^{s}f^{i}(x) = f^{ts}(x)$ ($x \in X$; $t, s \in T$). We impose continuity conditions on f as the needs arise.

A subset E of T is said to be *relatively dense* provided there exists a compact set A in T such that each left translate of A intersects E. A point x of X is called *almost periodic* provided that if U is a neighborhood of x, then there exists a relatively dense set E in T for which $f(x, E) \subset U$. We observe that the notion of almost periodic point depends on the topology in T, the strongest type of almost periodicity occurring when T is provided with the discrete topology. It is easily proved that a set E in T is relatively dense if and only if there exists a compact set E in E such that E is easily E. The set E is called the *orbit* of the point E.

THEOREM 1. If the family $[f^t|t\in T]$ is equi-continuous at x, if f_x is continuous on T, and if x is almost periodic, then the orbit of x is totally bounded. Conversely, if the family $[f^t|t\in T]$ is equi-uniformly continuous and if the orbit of x is totally bounded, then x is almost periodic.

PROOF. Suppose the hypotheses of the first statement hold. Let α be an index. There exists an index β such that the β -neighborhood of each compact set in X is contained in the union of finitely many α -neighborhoods. By hypothesis we can find an index γ such that $f^t(U_{\gamma}(x)) \subset U_{\beta}(f^t(x))$ $(t \in T)$. There are sets E and A in T such that T = EA, A is compact, and $f(x, E) \subset U_{\gamma}(x)$. Hence, $f(x, T) \subset f(U_{\gamma}(x), A) \subset U_{\beta}(f(x, A))$. Since f(x, A) is compact, $U_{\beta}(f(x, A))$ is contained in

Presented to the Society, April 27, 1946; received by the editors March 11, 1946.