A GEOMETRICAL CHARACTERIZATION FOR THE AFFINE DIFFERENTIAL INVARIANTS OF A SPACE CURVE

L. A. SANTALÓ

1. Introduction. Let $x=x(s)$ be the vector equation of a space curve C with the affine arc length s as parameter. It is known that $x(s)$ satisfies a differential equation of the following form $\left[1\right.$, p. 73; 3, p. 76] ${ }^{1}$

$$
\begin{equation*}
x^{\prime \prime \prime \prime}+k x^{\prime \prime}+t x^{\prime}=0, \tag{1.1}
\end{equation*}
$$

where the primes represent derivatives with respect to s. The vector x^{\prime} is the tangent vector and the vectors $x^{\prime \prime}$ and $x^{\prime \prime \prime}$ are called the affine principal normal and the affine binormal, respectively, of the curve C at the point considered. The vectors $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$ with the initial point at the point x of the curve C constitute the afine fundamental trihedral at x and they satisfy the following relation [1, p. 72; 3, p. 78]

$$
\begin{equation*}
\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=1 . \tag{1.2}
\end{equation*}
$$

The plane determined by the point x and the edges $x^{\prime}, x^{\prime \prime}$ of the affine fundamental trihedral is the osculating plane at x; the plane determined by x and the edges $x^{\prime \prime}, x^{\prime \prime \prime}$ is the affine normal plane and the plane determined by x and the edges $x^{\prime}, x^{\prime \prime \prime}$ is the affine rectifying plane of the curve C at the point x.

Sometimes it is convenient to use the vector $k x^{\prime} / 4+x^{\prime \prime \prime}$ which is called the binormal of Winternitz $[1, \mathrm{p} .76]$. The invariants k and t (functions of the affine arc length s) are called the affine curvature and the affine torsion respectively.

For the affine fundamental trihedral and for k and t some geometrical characterizations have been given by Blaschke [1, chap. 3], Salkowski [3, p. 76] and Haack [2]. The purpose of the present paper is to give a new geometrical construction for the mentioned elements, which we believe is simpler than those previously obtained.
2. Geometrical elements associated to an ordinary point of a space curve. Let us consider the space curve C represented by the vector equation $x=x(s)$ ($s=$ affine arc length) in the neighborhood of the point $x_{0}=x(0)$. If we denote by $x_{0}{ }^{(i)}$ the derivatives $d^{(i)} x / d s^{i}$ at the point $s=0$, since $x_{0}{ }^{\prime}, x_{0}{ }^{\prime}, x_{0}{ }^{\prime \prime}$ are not coplanar (by (1.2)), any point y of the space can be expressed in the form

[^0]
[^0]: Received by the editors January 17, 1946.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

