SOME REMARKS ABOUT ADDITIVE AND MULTIPLICATIVE FUNCTIONS

P. ERDÖS

The present paper contains some results about the classical multiplicative functions $\phi(n), \sigma(n)$ and also about general additive and multiplicative functions.
(1) It is well known that $n / \phi(n)$ and $\sigma(n) / n$ have a distribution function. ${ }^{1}$ Denote these functions by $f_{1}(x)$ and $f_{2}(x)$. $\left(f_{1}(x)\right.$ denotes the density of integers for which $n / \phi(n) \leqq x$.) It is known that both $f_{1}(x)$ and $f_{2}(x)$ are strictly incrtasing and purely singular. ${ }^{1}$ We propose to investigate $f_{1}(x)$ and $f_{2}(x)$; we shall give details only in case of $f_{1}(x)$. First we prove the following theorem.
Theorem 1. We have for every ϵ and sufficiently large x

$$
\begin{equation*}
\exp (-\exp [(1+\epsilon) a x])<1-f_{1}(x)<\exp (-\exp [(1-\epsilon) a x]) \tag{1}
\end{equation*}
$$

where $a=\exp (-\gamma), \gamma$ Euler's constant.
We shall prove a stronger result. Put $A_{r}=\prod_{i=1}^{r} p_{i}, p_{i}$ consecutive primes. Define A_{k} by $A_{k} / \phi\left(A_{k}\right) \geqq x>A_{k-1} / \phi\left(A_{k-1}\right)$. Then we have

$$
\begin{equation*}
1 / A_{k}<1-f_{1}(x)<1 / A_{k}^{1-\epsilon} . \tag{2}
\end{equation*}
$$

First of all it is easy to see that Theorem 1 follows from (2), since from the prime number theorem we easily obtain that $\log \log A_{k}$ $=(1+o(1)) a x$, which shows that (1) follows from (2).
(2) means that the density of integers with $\phi(n) \leqq(1 / x) n$ is between $1 / A_{k}$ and $1 / A_{k}{ }^{1-}$.
We evidently have for every $n \equiv 0\left(\bmod A_{k}\right), n / \phi(n) \geqq x$, which proves

$$
1 / A_{k} \leqq 1-f_{1}(x) .
$$

To get rid of the equality sign, it will be sufficient to observe that there exist integers u with $u / \phi(u) \geqq x,\left(u, A_{k}\right)=1$, and that the density of the integers $n \equiv 0(\bmod u), n \neq 0\left(\bmod A_{k}\right)$ is positive. This proves the first part of (2). The proof of the second part will be much harder. We split the integers satisfying $n / \phi(n) \geqq x$ into two classes. In the first class are the integers which have more than $\left[\left(1-\epsilon_{1}\right) k\right]=r$ prime factors not greater than $B p_{k}$, where $B=B\left(\epsilon_{1}\right)$ is a large number. In

[^0]
[^0]: Received by the editors June 22, 1945, and, in revised form, January 28, 1946.
 ${ }^{1}$ These results are due to Schönberg and Davenport. For a more general result see P. Erdös, J. London Math. Soc. vol. 13 (1938) pp. 119-127.

