A NOTE ON POINTWISE NONWANDERING TRANSFORMATIONS

W. H. GOTTSCHALK

Let X be a T_{1}-space and let f be a continuous transformation of X into X In the terminology of G. D. Birkhoff [1, p. 191], ${ }^{1}$ a point x of X is said to be nonwandering under f provided that to each neighborhood U of x there correspond infinitely many positive integers n for which $U \cap f^{n}(U) \neq \varnothing$; also, the transformation f is said to be pointwise nonwandering provided that each point of X is nonwandering under f.

Theorem 1. If f is pointwise nonwandering, then so also is fh for every positive integer k.

Proof. (We make use of a technique employed by Erdös and Stone [2, pp. 126-127].) Suppose k is a positive integer, $x_{0} \in X$, and U_{0} is a neighborhood ($=$ open neighborhood) of x_{0}. Let n_{1} be a positive integer for which $U_{0} \cap f^{n_{1}}\left(U_{0}\right) \neq \varnothing$. Choose $x_{1} \in U_{0}$ so that $f^{n_{1}}\left(x_{1}\right) \in U_{0}$ and a neighborhood U_{1} of x_{1} so that $U_{1} \subset U_{0}$ and $f^{n_{1}}\left(U_{1}\right) \subset U_{0}$. Let n_{2} be a positive integer for which $U_{1} \cap f^{n_{2}}\left(U_{1}\right) \neq \varnothing$. Choose $x_{2} \in U_{1}$ so that $f^{n_{2}}\left(x_{2}\right) \in U_{1}$ and a neighborhood U_{2} of x_{2} so that $U_{2} \subset U_{1}$ and $f^{n_{2}}\left(U_{2}\right) \subset U_{1}$. Continuing this process, we obtain a sequence $\left\{n_{i}\right\}$ of positive integers and a sequence $\left\{U_{i}\right\}$ of neighborhoods so that $U_{i} \subset U_{i-1}$ and $f^{n_{i}(}\left(U_{i}\right) \subset U_{i-1}(i=1,2, \cdots)$. Let r_{i} denote the integer for which $1 \leqq r_{i} \leqq k$ and $n_{i} \equiv r_{i} \bmod k$. Infinitely many of the r_{i} are equal to some integer, say r. We may suppose $r_{i}=r, U_{i} \subset U_{i-1}$ and ${ }^{n_{i}}\left(U_{i}\right) \subset U_{i-1}(i=1,2, \cdots)$. Choose an arbitrary positive integer p. Define $n=\sum_{i=1}^{p k} n_{i}$. Now $n \equiv 0 \bmod k$. Choose $x \in U_{p k}$. Clearly, $x \in U_{0}$ and $f^{n}(x) \in U_{0}$. Hence, $U_{0} \cap f^{n}\left(U_{0}\right) \neq \varnothing$. Since $n \geqq p$, the proof is completed.

Lemma 1. If $f(X)=X$ is a homeomorphism, if A and B are closed connected sets for which $A \cup B=X, A \cap B=x \in X$ and $A \cap f(A) \neq \varnothing$ $\neq B \cap f(B)$, and if x is nonwandering, then x is fixed.

Proof. Assume x is not fixed. We may suppose that $f(x) \in B$. Now $x \notin f^{-1}(A)$ for in the contrary case $f(x) \in A \cap B=x$. The set $f(A)$ is connected and intersects both A and B. Hence, $x \in f(A)$. There exists a neighborhood U of x such that $U \cap f^{-1}(A)=\varnothing$ and such that

[^0]
[^0]: Presented to the Society, August 14, 1944; received by the editors February 1, 1946
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

