TOEPLITZ METHODS WHICH SUM A GIVEN SEQUENCE

P. ERDÖS AND P. C. ROSENBLOOM

The following note arose out of discussions of a paper by Agnew, but is, however, self-contained.

THEOREM. Let $\{x_n\}$ be a bounded divergent sequence. Suppose that $\{y_n\}$ is summable by every regular Toeplitz method which sums $\{x_n\}$. Then $\{y_n\}$ is of the form $\{cx_n+a_n\}$ where $\{a_n\}$ is convergent.

PROOF. For typographical convenience we shall often write x(n) for x_n , and so on. Let $\{x(n_k)\}, k = 1, 2, \cdots$, be any convergent subsequence of $\{x_n\}$. Then $\{x_n\}$ is summable by the matrix (a(n, k)) where a(n, k) = 1 for $n = n_k$ and a(n, k) = 0 for $n \neq n_k$. Hence $\{y(n_k)\}$ is also convergent.

Let $\{n_k'\}$ and $\{n_k''\}$ be sequences of integers such that $n_k' \neq n_k''$ for all k and

$$\lim_{k\to\infty} x(n_k') = A, \qquad \lim_{k\to\infty} x(n_k'') = B, \qquad A \neq B.$$

These sequences $\{n_k'\}$ and $\{n_{k''}\}$ will be held fixed throughout the rest of the argument. Then the sequences $\{y(n_k')\}$ and $\{y(n_{k''})\}$ are also convergent, say to α and β respectively. Let $\{x(n_k)\}$ be an arbitrary convergent subsequence of $\{x_n\}$ with the limit C. Let λ and μ be determined by the equations

$$\lambda + \mu = 1, \quad \lambda A + \mu B = C.$$

Then the matrix (b(n, k)) with

$$b(n, k) = \begin{cases} \lambda, & n = n_k', k \text{ even,} \\ \mu, & n = n_k'', k \text{ even,} \\ 1, & n = n_k, k \text{ odd,} \\ 0, & \text{for all other values of } n \text{ and } k, \end{cases}$$

sums $\{x_n\}$ to the limit C. Hence it also sums $\{y_n\}$, that is

$$\lim_{k\to\infty} y(n_k) = \lim_{k\to\infty} (\lambda y(n'_k) + \mu y(n'_k)) = \lambda \alpha + \mu \beta.$$

Note that the numbers λ and μ depend only on C and not on the particular subsequence $\{x(n_k)\}$ converging to C, and hence $\lim_{k\to\infty} y(n_k)$

Received by the editors August 7, 1945, and, in revised form, October 23, 1945 and January 14, 1946.