APPROXIMATION IN THE SENSE OF LEAST *p*TH POWERS WITH A SINGLE AUXILIARY CONDITION OF INTERPOLATION

A. SPITZBART

Introduction. Let w = g(z) map the interior of the analytic Jordan curve *C* conformally into the interior of the circle |w| = 1. We shall say that the function f(z), analytic interior to *C*, is of class E_p there if $\int_{C_r} |f(z)|^p |dz|$ is bounded for r < 1, where C_r is the curve |g(z)| = r. A function is of class H_p if it is analytic for |z| < 1, and of class E_p there. We are taking p > 0.

Of the functions f(z), analytic interior to C, of class E_p there, with $f(\alpha) = A$ ($z = \alpha$ a point interior to C, A an arbitrary constant), let $F_0(z)$ be the one¹ which minimizes the integral $\int_C |f(z)|^p |dz|$. Let $P_n(z)$ be the minimizing polynomial of degree n with $P_n(\alpha) = A$, for this integral. We shall prove that the sequence $P_n(z)$, $n = 0, 1, 2, \cdots$, converges maximally to $F_0(z)$ on the closed set Γ , consisting of C and its interior, and then derive some extensions. We use the term maximal convergence in the sense of J. L. Walsh [3, p. 80].²

We denote by ρ the maximum value of R such that the minimizing function can be extended so as to be analytic and single-valued interior to Γ_R , as used by Walsh [3, p. 80].

1. Inequalities: unit circle. We shall start with the results for the unit circle.

THEOREM 1.1. Of the functions f(z) of class $H_p(p>0)$ interior to C: |z| = 1, with $f(\alpha) = A$, $|\alpha| < 1$, the one which minimizes the integral $\int_C |f(z)|^p |dz|$ is given by $F_0(z) = A[(|\alpha|^2 - 1)/(\bar{\alpha}z - 1)]^{2/p}$, with the branch for which $F_0(\alpha) = A$.

For, it is true that $\int_C |f(z)|^p |dz| \ge 2\pi |f(0)|^p$, so that for the case $\alpha = 0$, the minimizing function is $F_0(z) = A$. If, in the general case, we map the interior of the unit circle conformally into itself, with $z = \alpha$ corresponding to the origin, the desired result is obtained.

The main new tool exhibited by the paper is the following theorem.

THEOREM 1.2. Let $f_n(z)$ be a sequence of functions of class H_p with $f_n(\alpha) = A$ and $\int_C |f_n(z)|^p |dz| \leq \int_C |F_0(z)|^p |dz| + \epsilon_n$, where $\epsilon_n \rightarrow 0$ as

Presented to the Society, January 1, 1941; received by the editors December 8, 1945.

¹ The minimizing function $F_0(z)$ is unique.

² Numbers in brackets refer to the references cited at the end of the paper.