NOTE ON A THEOREM OF MURRAY

GEORGE W. MACKEY

1. Introduction. In a recent paper¹ [1]² Murray has shown that in any reflexive separable Banach space \mathfrak{B} every closed subspace \mathfrak{M} admits what he calls a quasi-complement, that is, a second closed subspace \mathfrak{N} such that $\mathfrak{M} \cap \mathfrak{N} = 0$ and such that $\mathfrak{M} + \mathfrak{N}$, the smallest subspace containing both \mathfrak{M} and \mathfrak{N} , is dense in \mathfrak{B} . It is the purpose of this note to give a simpler proof of the following somewhat more general theorem.

THEOREM. Let \mathfrak{B} be a separable normed linear space (not necessarily reflexive or even complete) and let \mathfrak{M} be a closed subspace of \mathfrak{B} . Then there exists a second closed subspace \mathfrak{N} such that $\mathfrak{M} \cap \mathfrak{N} = 0$ and $\mathfrak{M} \dotplus \mathfrak{N}$ is dense in \mathfrak{B} .

In proving this theorem it is convenient to make use of the notion of closed subspace of a linear system discussed at length in Chapter III of [2]. We repeat the necessary definitions here. A linear system X_L is an abstract linear space X together with a linear subspace L of the space X^* of all linear³ functionals defined on X. If l(x) = 0 for all l in L implies that x=0 (that is, if L is total) we say that X_L is a regular linear system. If M is a subspace of X [L] we denote by M' the set of all l in L [x in X] such that l(x)=0 for all x in X [l in L]. It is clear that $M\subseteq N$ implies $N'\subseteq M'$ and that $M''\supseteq M$. Since $M''' = (M'')'\subseteq M'$ and since $M''' = (M')''\supseteq M'$ it follows that M' = M''' and hence that M = M'' if and only if M is of the form N'. A subspace having either and hence both of these properties is said to be closed. We observe that the operation ' sets up a one-to-one inclusion inverting correspondence between the closed subspaces of X and L respectively.

2. Two lemmas. The proof of the theorem is based essentially on the following lemma.

LEMMA 1. Let X_L be a regular linear system such that both X and L are \aleph_0 dimensional, that is, have \aleph_0 independent generators. Then if M

Received by the editors August 20, 1945.

¹ The author is indebted to Professor Murray for letting him read this paper in manuscript form and for several helpful discussions during the preparation of the present note.

² Numbers in brackets refer to the bibliography.

³ By linear we mean additive and homogeneous.