A NOTE ON THE RIEMANN ZETA-FUNCTION

FU TRAING WANG

Let $\rho_r = \beta_r + i\gamma_r$ be the zeros of the Riemann zeta-function $\zeta(1/2+z)$ whose real part $\beta_r \ge 0$. Then we have the following formula which is an improvement on Paley-Wiener's $[1, p. 78]^1$

$$\int_{1}^{T} \frac{\log |\zeta(1/2 + it)|}{t^{2}} dt = 2\pi \sum_{\nu=1}^{\infty} \frac{\beta_{\nu}}{|\rho_{\nu}|^{2}} + \int_{0}^{\pi/2} R\{e^{-i\theta} \log \zeta(1/2 + e^{i\theta})\} d\theta + O\left(\frac{\log T}{T}\right).$$

In order to prove this formula let ρ_{ν} ($\nu = 1, 2, \dots, n$) be the *n* zeros of $\zeta(1/2+z)$ for which $0 < \gamma_{\nu} < T$ and $0 \leq \beta_{\nu} < 1/2$. We require the following lemma:

LEMMA. Let K be the unit semicircle with center z = 0 lying in the right half-plane R(z) > 0 and let C be the broken line consisting of three segments L_1 ($0 \le x \le T$, y = T), L_2 ($0 \le x \le T$, y = -T) and L_3 (x = T, $-T \le y \le T$). Then

(1)
$$\frac{\frac{1}{\pi}\int_{1}^{T} \frac{\log|\zeta(1/2+it)|}{t^{2}} dt = 2\sum_{\nu=1}^{n} \frac{\beta_{\nu}}{|\rho_{\nu}|^{2}} + \frac{1}{2\pi i}\int_{K} \frac{\log\zeta(1/2+z)}{z^{2}} dz - \frac{1}{2\pi i}\int_{C} \frac{\log\zeta(1/2+z)}{z^{2}} dz.$$

This is a form of Carleman's theorem which can be proved by a method of proof analogous to that of Littlewood's theorem (Titchmarsh [3, pp. 130-134]).

Let Γ be a contour describing C, K and the corresponding part of the imaginary axis, and let ρ_r be a point interior to Γ , and $\log(z-\rho_r)$ be taken as its principal value. We write C_1 as a contour describing Γ in positive direction to the point $i\gamma_r$, then along the segment $y=\gamma_r$, $0 < x < \beta_r - r$, and describing a small circle with center $z = \rho_r$, radius r, then going back along the negative side of this segment to $i\gamma_r$, and then along Γ to the starting point.

By Cauchy's theorem we get

$$\int_{C_1} \frac{\log (z-\rho_{\nu})}{z^2} dz = 0.$$

Received by the editors December 15, 1943, and, in revised form, June 12, 1945. ¹ Numbers in brackets refer to the references cited at the end of the paper.