A NOTE ON THE RIEMANN ZETA-FUNCTION

FU TRAING WANG

Let $\rho_{\nu}=\beta_{\nu}+i \gamma_{\nu}$ be the zeros of the Riemann zeta-function $\zeta(1 / 2+z)$ whose real part $\beta_{\nu} \geqq 0$. Then we have the following formula which is an improvement on Paley-Wiener's [1, p. 78] ${ }^{1}$

$$
\begin{aligned}
& \int_{1}^{T} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} d t=2 \pi \sum_{\nu=1}^{\infty} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}} \\
&+\int_{0}^{\pi / 2} R\left\{e^{-i \theta} \log \zeta\left(1 / 2+e^{i \theta}\right)\right\} d \theta+O\left(\frac{\log T}{T}\right)
\end{aligned}
$$

In order to prove this formula let $\rho_{\nu}(\nu=1,2, \cdots, n)$ be the n zeros of $\zeta(1 / 2+z)$ for which $0<\gamma_{\nu}<T$ and $0 \leqq \beta_{\nu}<1 / 2$. We require the following lemma:

Lemma. Let K be the unit semicircle with center $z=0$ lying in the right half-plane $R(z)>0$ and let C be the broken line consisting of three segments $L_{1}(0 \leqq x \leqq T, y=T), L_{2}(0 \leqq x \leqq T, y=-T)$ and $L_{3}(x=T$, $-T \leqq y \leqq T$). Then

$$
\begin{align*}
& \frac{1}{\pi} \int_{1}^{T} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} d t=2 \sum_{\nu=1}^{n} \frac{\beta_{\nu}}{\left|\rho_{\nu}\right|^{2}} \tag{1}\\
& \quad+\frac{1}{2 \pi i} \int_{K} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z-\frac{1}{2 \pi i} \int_{C} \frac{\log \zeta(1 / 2+z)}{z^{2}} d z
\end{align*}
$$

This is a form of Carleman's theorem which can be proved by a method of proof analogous to that of Littlewood's theorem (Titchmarsh [3, pp. 130-134]).

Let Γ be a contour describing C, K and the corresponding part of the imaginary axis, and let ρ_{ν} be a point interior to Γ, and $\log \left(z-\rho_{\nu}\right)$ be taken as its principal value. We write C_{1} as a contour describing Γ in positive direction to the point $i \gamma_{\nu}$, then along the segment $y=\gamma_{\nu}$, $0<x<\beta_{\nu}-r$, and describing a small circle with center $z=\rho_{\nu}$, radius r, then going back along the negative side of this segment to $i \gamma_{\nu}$, and then along Γ to the starting point.

By Cauchy's theorem we get

$$
\int_{C_{1}} \frac{\log \left(z-\rho_{v}\right)}{z^{2}} d z=0
$$

[^0]
[^0]: Received by the editors December 15, 1943, and, in revised form, June 12, 1945.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

