
ON THE THEOREM OF FEJÉR-RIESZ 

A. ZYGMUND 

1. Statement of results. Let 

(1) ƒ(*) =* ao + axz + a2z
2 + • • • + anzn + • • • 

be a function regular for \z\ g l . The well known inequality of Fejér 
and Riesz asserts that 

(2) f \f(z)\\dz\ è^-f\f(z)\\dz\, 
J D 2, J c 

where C is the circumference \z\ = 1, and D any of its diameters.1 

For f(z) = F'(z), the inequality (2) takes the form 

(3) f \F'(z)\\dz\ è~f \F'(z)\\dz\f 
J D 2 J c 

which shows that the total variation of F(z) along D does not exceed 
half of the total variation of F along C. In this form the inequality 
remains valid for harmonic functions. Let z*=pei9. If U(z)= Z7(p, 0) 
is harmonic for \z\ g l , the total variation of F along D does not ex
ceed half of the total variation of F along C.2 In symbols, 

(4) f | Up\dP g 1 f \U,\â9. 

Let V(z) = V(p, 6) be the harmonic function conjugate to U. In (4) 
we may replace Up by p~~lV$. Writing Ue = uf Ve — v, we obtain an 
equivalent form of the inequality (4), namely 

| dz| S — f I u(z) \\dz\. 
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